anandamide and selfotel

anandamide has been researched along with selfotel* in 1 studies

Other Studies

1 other study(ies) available for anandamide and selfotel

ArticleYear
Cannabinoid CB1 receptor activation does not prevent the toxicity of glutamate towards embryonic chick telencephalon primary cultures.
    Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, 2003, Volume: 136, Issue:3

    Cannabinoids, as a result of their ability to activate cannabinoid CB1 receptors, have been shown to possess neuroprotective properties in vivo. In vitro studies into neuroprotective effects mediated by CB1 receptors have in general used primary neuronal cultures derived from embryonic rodents. In the present study, we have investigated whether embryonic chick telencephalon primary cultures in serum-free medium are a useful alternative for such in vitro studies. The CB agonist CP 55940 reduced the cAMP response to 5 microM forskolin by 40 and 50% at concentrations of 3 nM and 30 nM, respectively. This reduction was blocked by the CB1 receptor antagonist AM251, indicating the presence of functional CB1 receptors in the cultures. Incubation of the cultures with glutamate (100 microM or 1 mM) for 1 h followed by medium change and incubation for 24 h produced a release of the cytoplasmic enzyme lactate dehydrogenase into the medium. This release was prevented by MK-801 confirming the central role of NMDA receptors in the glutamate toxicity. However, 3-30 nM CP 55940 did not produce any neuroprotection in this model regardless as to whether dibutyryl cyclic AMP was added to the culture medium. The endocannabinoid anandamide was also without effect when added either per se or together with the related N-acyl ethanolamines palmitoylethanolamide, oleoylethanolamide and stearoylethanolamide (at relative concentrations matching those seen in rat brain after excitotoxic insult). It is concluded that embryonic chick neurons in primary serum-free culture are not a useful model for the study of neuroprotective effects mediated by CB1 receptors in vitro.

    Topics: Animals; Arachidonic Acids; Cannabinoids; Cells, Cultured; Chick Embryo; Colforsin; Cyclic AMP; Cyclohexanols; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Combinations; Endocannabinoids; Excitatory Amino Acid Antagonists; Glutamic Acid; L-Lactate Dehydrogenase; Models, Animal; Neurons; Pipecolic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Telencephalon

2003