anandamide has been researched along with palmidrol* in 147 studies
8 review(s) available for anandamide and palmidrol
Article | Year |
---|---|
Modulation of neuropathic-pain-related behaviour by the spinal endocannabinoid/endovanilloid system.
Neuropathic pain refers to chronic pain that results from injury to the nervous system. The mechanisms involved in neuropathic pain are complex and involve both peripheral and central phenomena. Although numerous pharmacological agents are available for the treatment of neuropathic pain, definitive drug therapy has remained elusive. Recent drug discovery efforts have identified an original neurobiological approach to the pathophysiology of neuropathic pain. The development of innovative pharmacological strategies has led to the identification of new promising pharmacological targets, including glutamate antagonists, microglia inhibitors and, interestingly, endogenous ligands of cannabinoids and the transient receptor potential vanilloid type 1 (TRPV1). Endocannabinoids (ECs), endovanilloids and the enzymes that regulate their metabolism represent promising pharmacological targets for the development of a successful pain treatment. This review is an update of the relationship between cannabinoid receptors (CB1) and TRPV1 channels and their possible implications for neuropathic pain. The data are focused on endogenous spinal mechanisms of pain control by anandamide, and the current and emerging pharmacotherapeutic approaches that benefit from the pharmacological modulation of spinal EC and/or endovanilloid systems under chronic pain conditions will be discussed. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acid; Arachidonic Acids; Behavior; Benzamides; Carbamates; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; Humans; Microglia; Neuralgia; Palmitic Acids; Peripheral Nerve Injuries; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Spinal Cord Injuries; TRPV Cation Channels | 2012 |
Palmitoylethanolamide and other anandamide congeners. Proposed role in the diseased brain.
Acylethanolamides are formed in the brain "on demand" from membrane phospholipids called N-acylated phosphatidylethanolamines. The acylethanolamides are signaling molecules of lipid nature, and this lipofilicity suggests an autocrine function. The acylethanolamides include palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamide (SEA), and several other quantitative minor species including anandamide (= arachidonoylethanolamide). PEA and OEA can activate several different receptors and inhibit some ion channels, e.g., PPARalpha, vanilloid receptor, K(+) channels (Kv4.3, Kv1.5), and OEA can activate GPR119 and inhibit ceramidases. Targets for SEA are less clear, but it has some cannabimimetic actions in rats in vivo. All acylethanolamides accumulate during neuronal injury, and injected OEA has neuroprotective effects, and PEA has anti-inflammatory effects as studied in the peripheral system. Several of the pharmacological effects seem to be mediated via activation of PPARalpha. Recently, injected OEA has been found to consolidate memories in rats. Inhibitors of the acylethanolamide-degrading enzyme FAAH can increase levels of all acylethanolamides including annandamide, and some of the pharmacological effects caused by these inhibitors may be explained by increased cerebral levels of OEA and PEA, e.g., suppression of nicotine-induced activation of dopamine neurons. Furthermore, through activation of PPARalpha, OEA and PEA may stimulate neurosteroid synthesis, thereby modulating several biological functions mediated by GABA(A) receptors. The existence of acylethanolamides in the mammalian brain has been known for decades, but it is first within the last few years that the putative biological functions of the three most abundant acylethanolamides species are starting to emerge. Topics: Amides; Animals; Arachidonic Acids; Brain; Cytoprotection; Endocannabinoids; Ethanolamines; Humans; Nerve Degeneration; Neurons; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Receptors, Cannabinoid | 2010 |
Role of acylethanolamides in the gastrointestinal tract with special reference to food intake and energy balance.
Acylethanolamides (AEs) are a group of lipids occurring in both plants and animals. The best-studied AEs are the endocannabinoid anandamide (AEA), the anti-inflammatory compound palmitoylethanolamide (PEA), and the potent anorexigenic molecule oleoylethanolamide (OEA). AEs are biosynthesized in the gastrointestinal tract, and their levels may change in response to noxious stimuli, food deprivation or diet-induced obesity. The biological actions of AEs within the gut are not limited to the modulation of food intake and energy balance. For example, AEs exert potential beneficial effects in the regulation of intestinal motility, secretion, inflammation and cellular proliferation. Molecular targets of AEs, which have been identified in the gastrointestinal tract, include cannabinoid CB(1) and CB(2) receptors (activated by AEA), transient receptor potential vanilloid type 1 (TRPV1, activated by AEA and OEA), the nuclear receptor peroxisome proliferators-activated receptor-alpha (PPAR-alpha, activated by OEA and, to a less extent, by PEA), and the orphan G-coupled receptors GPR119 (activated by OEA) and GPR55 (activated by PEA and, with lower potency, by AEA and OEA). Modulation of AE levels in the gut may provide new pharmacological strategies not only for the treatment of feeding disorders but also for the prevention or cure of widespread intestinal diseases such as inflammatory bowel disease and colon cancer. Topics: Amides; Analgesics; Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Apoptosis; Arachidonic Acids; Caco-2 Cells; Dietary Fats; Eating; Endocannabinoids; Energy Metabolism; Ethanolamine; Ethanolamines; Feeding Behavior; Gastric Acid; Gastrointestinal Tract; Humans; Intestinal Absorption; Intra-Abdominal Fat; Oleic Acids; Palmitic Acids; Peroxisome Proliferator-Activated Receptors; Polyunsaturated Alkamides; TRPV Cation Channels | 2009 |
Fatty acid amide hydrolase, an enzyme with many bioactive substrates. Possible therapeutic implications.
During the last eight years a number of bioactive lipid mediators, the amides or esters of long chain fatty acids, have been discovered or re-discovered. These are: anandamide (N-arachidonoyl-ethanolamine, AEA) and 2-arachidonoylglycerol (2-AG), two endogenous agonists of cannabinoid receptors; oleamide (cis-9-octadecenoamide), a putative endogenous sleep-inducing factor; N-palmitoylethanol amine (PEA), a compound with promising anti-inflammatory and immune-modulatory activity. These compounds are all substrates for the same hydrolytic enzyme, fatty acid amide hydrolase (FAAH), whose molecular characterization was obtained in 1996. The molecular and enzymatic properties, tissue distribution, substrate recognition properties, physiological regulation and biological role of FAAH are discussed in this article, with special emphasis on the possible pharmacological manipulation of the activity of this enzyme with therapeutic purpose. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; Humans; Mice; Molecular Sequence Data; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Sequence Homology, Amino Acid; Structure-Activity Relationship; Substrate Specificity; Swine | 2002 |
Cannabinoids and pain.
Recent advances have dramatically increased our understanding of cannabinoid pharmacology: the psychoactive constituents of Cannabis sativa have been isolated, synthetic cannabinoids described and an endocannabinoid system identified, together with its component receptors, ligands and their biochemistry. Strong laboratory evidence now underwrites anecdotal claims of cannabinoid analgesia in inflammatory and neuropathic pain. Sites of analgesic action have been identified in brain, spinal cord and the periphery, with the latter two presenting attractive targets for divorcing the analgesic and psychotrophic effects of cannabinoids. Clinical trials are now required, but are hindered by a paucity of cannabinoids of suitable bioavailability and therapeutic ratio. Topics: Amides; Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Benzoxazines; Brain; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Cell Membrane; Clinical Trials as Topic; Disease Models, Animal; Drug Design; Drug Interactions; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; Humans; Injections, Spinal; Molecular Structure; Morpholines; Naphthalenes; Pain; Palmitates; Palmitic Acids; Piperidines; Plant Extracts; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Spinal Cord | 2001 |
Fatty acid amide hydrolase: biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleamide.
Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of a number of important endogenous fatty acid amides, including the endogenous cannabimimetic agent anandamide (AEA), the sleep-inducing compound oleamide, and the putative anti-inflammatory agent palmitoylethanolamide (PEA). In recent years, there have been great advances in our understanding of the biochemical and pharmacological properties of the enzyme. In this commentary, the structure and biochemical properties of FAAH and the development of potent and selective FAAH inhibitors are reviewed, together with a brief discussion on the therapeutic possibilities for such compounds in the treatment of inflammatory pain and ischaemic states. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; Humans; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides | 2001 |
Cannabimimetic fatty acid derivatives in cancer and inflammation.
Evidence for the role of the cannabimimetic fatty acid derivatives (CFADs), i.e. anandamide (arachidonoylethanolamide, AEA), 2-arachidonoylglycerol (2-AG) and palmitoylethanolamide (PEA), in the control of inflammation and of the proliferation of tumor cells is reviewed here. The biosynthesis of AEA, PEA, or 2-AG can be induced by stimulation with either Ca(2+) ionophores, lipopolysaccharide, or platelet activating factor in macrophages, and by ionomycin or antigen challenge in rat basophilic leukemia (RBL-2H3) cells (a widely used model for mast cells). These cells also inactivate CFADs through re-uptake and/or hydrolysis and/or esterification processes. AEA and PEA modulate cytokine and/or arachidonate release from macrophages in vitro, regulate serotonin secretion from RBL-2H3 cells, and are analgesic in some animal models of inflammatory pain. However, the involvement of endogenous CFADs and cannabinoid CB(1) and CB(2) receptors in these effects is still controversial. In human breast and prostate cancer cells, AEA and 2-AG, but not PEA, potently inhibit prolactin and/or nerve growth factor (NGF)-induced cell proliferation. Vanillyl-derivatives of anandamide, such as olvanil and arvanil, exhibit even higher anti-proliferative activity. These effects are due to suppression of the levels of the 100 kDa prolactin receptor or of the high affinity NGF receptors (trk), are mediated by CB(1)-like cannabinoid receptors, and are enhanced by other CFADs. Inhibition of adenylyl cyclase and activation of mitogen-activated protein kinase underlie the anti-mitogenic actions of AEA. The possibility that CFADs act as local inhibitors of the proliferation of human breast cancer is discussed here. Topics: Adjuvants, Immunologic; Amides; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Arachidonic Acids; Breast Neoplasms; Cannabinoids; Cell Division; Endocannabinoids; Ethanolamines; Glycerides; Humans; Inflammation; Male; Neoplasms; Palmitic Acids; Polyunsaturated Alkamides; Prostatic Neoplasms; Rats; Receptors, Growth Factor | 2000 |
A role for the endogenous cannabinoid system in the peripheral control of pain initiation.
Topics: Amides; Analgesics; Animals; Arachidonic Acids; Brain; Cannabinoids; Drug Interactions; Endocannabinoids; Ethanolamines; Ganglia, Spinal; Glycerides; Humans; Nociceptors; Pain; Palmitic Acids; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug; Signal Transduction | 2000 |
3 trial(s) available for anandamide and palmidrol
Article | Year |
---|---|
Food Liking Enhances the Plasma Response of 2-Arachidonoylglycerol and of Pancreatic Polypeptide upon Modified Sham Feeding in Humans.
Food palatability increases food intake and may lead to overeating. The mechanisms behind this observation are still largely unknown.. The aims of this study were the following: 1) to elucidate the plasma responses of endocannabinoids, N-acylethanolamines, and gastrointestinal peptides to a palatable (sweet), unpalatable (bitter), and sensory-acceptable (tasteless control) food, and 2) to verify whether some of these bioactive compounds can serve as plasma biomarkers of food liking in humans.. Three puddings providing 60 kcal (35% from proteins, 62% from carbohydrates, and 3% from fats) but with different taste were developed. Twenty healthy subjects (11 women and 9 men; mean age 28 y and BMI 22.7 kg/m(2)), selected because they liked the puddings in the order sweet > control > bitter, participated in a randomized crossover study based on a modified sham feeding (MSF) protocol. Blood samples at baseline and every 5 min up to 20 min after the MSF were analyzed for gastrointestinal peptides, endocannabinoids, and N-acylethanolamines. Thirty minutes after the MSF, energy intake at an ad libitum breakfast was measured.. After the MSF, no response was observed in 7 of 9 gastrointestinal peptides measured. The plasma ghrelin concentration at 20 min after the sweet and bitter puddings was 25% lower than after the control pudding (P = 0.04), and the pancreatic polypeptide response after the sweet pudding was 23% greater than after the bitter pudding (P = 0.02). The plasma response of 2-arachidonoylglycerol after the sweet pudding was 37% and 15% higher than after the bitter (P < 0.001) and control (P = 0.03) puddings, respectively. Trends for greater responses of anandamide (P = 0.06), linoleoylethanolamide (P = 0.07), palmitoylethanolamide (P = 0.06), and oleoylethanolamide (P = 0.09) were found after the sweet pudding than after the bitter pudding. No differences in subsequent energy intake were recorded.. The data demonstrated that food palatability influenced some plasma endocannabinoid and N-acylethanolamine concentrations during the cephalic phase response and indicated that 2-arachidonoylglycerol and pancreatic polypeptide can be used as biomarkers of food liking in humans. Topics: Adult; Amides; Arachidonic Acids; Blood Glucose; Body Mass Index; Cross-Over Studies; Edetic Acid; Endocannabinoids; Energy Intake; Ethanolamines; Female; Food Preferences; Ghrelin; Glycerides; Humans; Linear Models; Linoleic Acids; Male; Oleic Acids; Palmitic Acids; Pancreatic Polypeptide; Polyunsaturated Alkamides; Taste; Young Adult | 2015 |
Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia.
Cannabidiol is a component of marijuana that does not activate cannabinoid receptors, but moderately inhibits the degradation of the endocannabinoid anandamide. We previously reported that an elevation of anandamide levels in cerebrospinal fluid inversely correlated to psychotic symptoms. Furthermore, enhanced anandamide signaling let to a lower transition rate from initial prodromal states into frank psychosis as well as postponed transition. In our translational approach, we performed a double-blind, randomized clinical trial of cannabidiol vs amisulpride, a potent antipsychotic, in acute schizophrenia to evaluate the clinical relevance of our initial findings. Either treatment was safe and led to significant clinical improvement, but cannabidiol displayed a markedly superior side-effect profile. Moreover, cannabidiol treatment was accompanied by a significant increase in serum anandamide levels, which was significantly associated with clinical improvement. The results suggest that inhibition of anandamide deactivation may contribute to the antipsychotic effects of cannabidiol potentially representing a completely new mechanism in the treatment of schizophrenia. Topics: Acute Disease; Adult; Amides; Amisulpride; Antipsychotic Agents; Arachidonic Acids; Cannabidiol; Double-Blind Method; Drug Therapy, Combination; Endocannabinoids; Ethanolamines; Female; Humans; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Psychiatric Status Rating Scales; Schizophrenia; Schizophrenic Psychology; Signal Transduction; Sulpiride; Young Adult | 2012 |
Role of osteopathic manipulative treatment in altering pain biomarkers: a pilot study.
Underlying mechanisms explaining the effects of osteopathic manipulative treatment (OMT) are poorly defined. The authors evaluate various nociceptive (pain) biomarkers that have been suggested as important mediators in this process.. To determine if OMT influences levels of circulatory pain biomarkers.. In a prospective, blinded assessment, blood was collected from 20 subjects (10 with chronic low back pain [LBP], 10 controls without chronic LBP) for 5 consecutive days. On day 4, OMT was administered to subjects 1 hour before blood collection. Blood was analyzed for levels of beta-endorphin (betaE), serotonin (5-hydroxytryptamine [5-HT]), 5-hydroxyindoleacetic acid (5-HIAA), anandamide (arachidonoylethanolamide [AEA]), and N-palmitoylethanolamide (PEA). A daily questionnaire was used to monitor confounding factors, including pain and stress levels, sleep patterns, and substance use.. Increases from baseline in betaE and PEA levels and a decrease in AEA levels occurred immediately posttreatment. At 24 hours posttreatment, similar biomarker changes from baseline were observed. A decrease in stress occurred from baseline to day 5. The change in PEA from baseline to 24 hours posttreatment correlated with the corresponding changes in stress. Subgroup analysis showed that subjects with chronic LBP had significantly reduced 5-HIAA levels at 30 minutes posttreatment (P=.05) and 5-HT levels at 24 hours posttreatment (P=.02) when compared with baseline concentrations. The increase in PEA in subjects with chronic LBP at 30 minutes posttreatment was two times greater than the increase in control subjects.. Concentrations of several circulatory pain biomarkers were altered after OMT. The degree and duration of these changes were greater in subjects with chronic LBP than in control subjects without the disorder. Topics: Adult; Amides; Arachidonic Acids; beta-Endorphin; Biomarkers; Endocannabinoids; Ethanolamines; Female; Follow-Up Studies; Humans; Hydroxyindoleacetic Acid; Low Back Pain; Male; Manipulation, Osteopathic; Middle Aged; Pain Measurement; Palmitic Acids; Pilot Projects; Polyunsaturated Alkamides; Prospective Studies; Receptor, Cannabinoid, CB2; Serotonin; Severity of Illness Index; Treatment Outcome | 2007 |
136 other study(ies) available for anandamide and palmidrol
Article | Year |
---|---|
Distribution of an analgesic palmitoylethanolamide and other N-acylethanolamines in human placental membranes.
Human amniotic and amniochorionic membranes (AM, ACM) represent the most often used grafts accelerating wound healing. Palmitoylethanolamide, oleoylethanolamide and anandamide are endogenous bioactive lipid molecules, generally referred as N-acylethanolamines. They express analgesic, nociceptive, neuroprotective and anti-inflammatory properties. We assessed the distribution of these lipid mediators in placental tissues, as they could participate on analgesic and wound healing effect of AM/ACM grafts.. Seven placentas were collected after caesarean delivery and fresh samples of AM, ACM, placental disc, umbilical cord, umbilical serum and vernix caseosa, and decontaminated samples (antibiotic solution BASE 128) of AM and ACM have been prepared. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used for N-acylethanolamines analysis.. N-acylethanolamines were present in all studied tissues, palmitoylethanolamide being the most abundant and the anandamide the least. For palmitoylethanolamide the maximum average concentration was detected in AM (350.33 ± 239.26 ng/g), while oleoylethanolamide and anandamide were most abundant in placenta (219.08 ± 79.42 ng/g and 30.06 ± 7.77 ng/g, respectively). Low levels of N-acylethanolamines were found in serum and vernix. A significant increase in the levels of N-acylethanolamines (3.1-3.6-fold, P < 0.001) was observed in AM when the tissues were decontaminated using antibiotic solution. The increase in decontaminated ACM was not statistically significant.. The presence of N-acylethanolamines, particularly palmitoylethanolamide in AM and ACM allows us to propose these lipid mediators as the likely factors responsible for the anti-hyperalgesic, but also anti-inflammatory and neuroprotective, effects of AM/ACM grafts in wound healing treatment. The increase of N-acylethanolamines levels in AM and ACM after tissue decontamination indicates that tissue processing is an important factor in maintaining the analgesic effect. Topics: Analgesics; Endocannabinoids; Ethanolamines; Female; Humans; Placenta; Polyunsaturated Alkamides; Pregnancy | 2023 |
Childhood trauma and being at-risk for psychosis are associated with higher peripheral endocannabinoids.
Evidence has been accumulating regarding alterations in components of the endocannabinoid system in patients with psychosis. Of all the putative risk factors associated with psychosis, being at clinical high-risk for psychosis (CHR) has the strongest association with the onset of psychosis, and exposure to childhood trauma has been linked to an increased risk of development of psychotic disorder. We aimed to investigate whether being at-risk for psychosis and exposure to childhood trauma were associated with altered endocannabinoid levels.. We compared 33 CHR participants with 58 healthy controls (HC) and collected information about previous exposure to childhood trauma as well as plasma samples to analyse endocannabinoid levels.. Individuals with both CHR and experience of childhood trauma had higher N-palmitoylethanolamine (p < 0.001) and anandamide (p < 0.001) levels in peripheral blood compared to HC and those with no childhood trauma. There was also a significant correlation between N-palmitoylethanolamine levels and symptoms as well as childhood trauma.. Our results suggest an association between CHR and/or childhood maltreatment and elevated endocannabinoid levels in peripheral blood, with a greater alteration in those with both CHR status and history of childhood maltreatment compared to those with either of those risks alone. Furthermore, endocannabinoid levels increased linearly with the number of risk factors and elevated endocannabinoid levels correlated with the severity of CHR symptoms and extent of childhood maltreatment. Further studies in larger cohorts, employing longitudinal designs are needed to confirm these findings and delineate the precise role of endocannabinoid alterations in the pathophysiology of psychosis. Topics: Adult; Adverse Childhood Experiences; Amides; Arachidonic Acids; Case-Control Studies; Endocannabinoids; Ethanolamines; Female; Humans; Male; Palmitic Acids; Polyunsaturated Alkamides; Prodromal Symptoms; Psychiatric Status Rating Scales; Psychotic Disorders; Risk Factors; Young Adult | 2020 |
Fatty acid amide hydrolase inhibition normalises bladder function and reduces pain through normalising the anandamide/palmitoylethanolamine ratio in the inflamed bladder of rats.
Fatty acid amide hydrolase inhibition may be used to control bladder function and pain by modulating endocannabinoid levels in cystitis. We studied the effect of the peripherally restricted fatty acid amide hydrolase inhibitor URB937 in bladder reflex activity and bladder pain using the lipopolysaccharide model of cystitis. We also correlated the URB937's effects with tissue levels of the endocannabinoids anandamide and palmitoylethanolamine. URB937 did not change the reflex activity of normal bladders. In inflamed bladders, URB937 had a U-shaped dose-response curve; following an initial cannabinoid receptor type 1-mediated reduction in pain responses and normalisation of bladder reflex activity, URB937 gradually increased both pain responses and bladder reflex activity through the transient receptor potential ion channel subfamily V member 1. Chronic cystitis increased the tissue levels of anandamide and decreased those of palmitoylethanolamine. At the dose that normalised bladder reflex activity and decreased pain responses, URB937 normalised the levels of anandamide and palmitoylethanolamine in the bladder. At high doses that induced excitatory effects, URB937 apparently did not change anandamide and palmitoylethanolamine levels, which therefore were in the range of the inflamed bladder. Fatty acid amide hydrolase inhibition results in complex changes in bladder endocannabinoid levels. The therapeutic effect of fatty acid amide hydrolase inhibitors is not related to increase in anandamide levels but rather a normalisation of the anandamide and palmitoylethanolamine level ratio. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Cannabinoids; Cystitis; Endocannabinoids; Ethanolamines; Female; Pain; Palmitic Acids; Polyunsaturated Alkamides; Rats, Wistar; Urinary Bladder | 2020 |
Impact of circadian rhythmicity and sleep restriction on circulating endocannabinoid (eCB) N-arachidonoylethanolamine (anandamide).
The endocannabinoid (eCB) system is involved in diverse aspects of human physiology and behavior but little is known about the impact of circadian rhythmicity on the system. The two most studied endocannabinoids, AEA (ananamide) and 2-AG (2-arachidonoylglycerol), can be measured in peripheral blood however the functional relevance of peripheral eCB levels is not clear. Having previously detailed the 24-h profile of serum 2-AG, here we report the 24-h serum profile of AEA to determine if these two endocannabinoids vary in parallel across the biological day including a nocturnal 8.5-h sleep period. Further, we assessed and compared the effect of a physiological challenge, in the form of sleep restriction to 4.5-h, on these two profiles.. In this randomized crossover study, we examined serum concentrations of AEA across a 24-h period in fourteen young adults. Congeners of AEA, the structural analogs oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) were simultaneously assayed. Prior to 24-h blood sampling, each participant was exposed to two nights of normal (8.5 h) or restricted sleep (4.5 h). The two sleep conditions were separated by at least one month. In both sleep conditions, during the period of blood sampling, each individual ate the same high-carbohydrate meal at 0900, 1400, and 1900.. Mean 24-h concentrations of AEA were 0.697 ± 0.11 pmol/ml. A reproducible biphasic 24-h profile of AEA was observed with a first peak occurring during early sleep (0200) and a second peak in the mid-afternoon (1500) while a nadir was detected in the mid-morning (1000). The 24-h profiles for both OEA and PEA followed a similar pattern to that observed for AEA. AEA, OEA, and PEA levels were not affected by sleep restriction at any time of day, contrasting with the elevation of early afternoon levels previously observed for 2-AG.. The 24-h rhythm of AEA is markedly different from that of 2-AG, being of lesser amplitude and biphasic, rather than monophasic. These observations suggest distinct regulatory pathways of the two eCB and indicate that time of day needs to be carefully controlled in studies attempting to delineate their relative roles. Moreover, unlike 2-AG, AEA is not altered by sleep restriction, suggesting that physiological perturbations may affect AEA and 2-AG differently. Similar 24-h profiles were observed for OEA and PEA following normal and restricted sleep, further corroborating the validity of the wave-shape and lack of response to sleep loss observed for the AEA profile. Therapeutic approaches involving agonism or antagonism of peripheral eCB signaling will likely need to be tailored according to time of day. Topics: Adolescent; Adult; Amides; Arachidonic Acids; Circadian Rhythm; Cross-Over Studies; Endocannabinoids; Ethanolamines; Female; Glycerides; Humans; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Sleep; Young Adult | 2020 |
Essential fatty acids deficient diet modulates N-Acylethanolamide profile in rat's tissues.
No data are available on whether a diet deficient of the essential fatty acids is able to modulate tissue levels of endocannabinoids and congeners. Male rats fed for 12 weeks a diet deficient of essential fatty acids, palmitic and oleic acids (EFAD), replaced with saturated fatty acids (SAFA), showed lowered n-3 and n-6 PUFAs levels in plasma, liver and adipose tissue, with concomitant steep increase of oleic and mead acids, while in hypothalamus no changes in PUFA concentration were detected and only palmitoleic acid was found increased. We found a reduction of anandamide and palmitoylethanolamide in liver and brain, while oleoylethanolamide increased significantly in liver and adipose tissue, associated to a 50 % body weight decrease. Changes in N-acylethanolamide profile may contribute to body weight reduction distinctive of EFA deficiency. Topics: Adipose Tissue; Amides; Animals; Arachidonic Acids; Body Weight; Brain Chemistry; Endocannabinoids; Ethanolamines; Fatty Acids; Fatty Acids, Essential; Fatty Acids, Omega-3; Fatty Acids, Omega-6; Liver; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats | 2020 |
Increased Anandamide and Decreased Pain and Depression after Exercise in Fibromyalgia.
Physical exercise is increasingly being promoted by health care for chronic pain conditions with beneficial outcomes, such as pain and fatigue reduction, and increased quality of life. Nevertheless, knowledge about biochemical consequences of physical exercise in chronic pain is still relatively poor. The endocannabinoid system has been suggested to play a role for acute exercise-induced reward and pain inhibition. The aim of this study is to investigate the chronic outcomes of resistance exercise on levels of endocannabinoids and related lipids in fibromyalgia (FM).. This study examine the outcomes of a 15-wk person-centered resistance exercise program on plasma levels of the lipid mediators; anandamide, 2-arachidonoylglycerol (2-AG), oleoylethanolamide, palmitoylethanolamide, and stearoylethanolamide (SEA) sampled from 37 women with FM and 33 healthy controls. The associations between clinical scorings of pain, depression, anxiety, fatigue, and muscle strength with levels of these lipid mediators before and after the exercise program are also analyzed.. After the 15-wk exercise program, anandamide levels were significantly increased, and SEA levels significantly decreased in FM. Pain intensity and depression scorings decreased and muscle strength increased, and in a multivariate context, muscle strength was positively associated with 2-AG levels after the resistance exercise program in FM.. The increased anandamide and decreased SEA in women with FM after the 15-wk program might point to a chronic effect of resistance exercise. Pain and depression scorings decreased in the FM group after the program, but no associations between pain, depression, and lipid level changes were assured. Topics: Amides; Anxiety; Arachidonic Acids; Depression; Endocannabinoids; Ethanolamines; Exercise Therapy; Fatigue; Female; Fibromyalgia; Glycerides; Humans; Oleic Acids; Pain Management; Palmitic Acids; Polyunsaturated Alkamides; Resistance Training; Stearic Acids | 2020 |
Effects of a High-Protein Diet on Cardiometabolic Health, Vascular Function, and Endocannabinoids-A PREVIEW Study.
Topics: Adult; Aged; Amides; Arachidonic Acids; Blood Pressure; Body Mass Index; Cardiovascular Diseases; Cholesterol; Diet, High-Protein; Endocannabinoids; Ethanolamines; Glycerides; Humans; Lipoproteins, LDL; Middle Aged; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Weight Loss | 2020 |
Prediction of preterm labour from a single blood test: The role of the endocannabinoid system in predicting preterm birth in high-risk women.
To determine if plasma concentrations of the N-acylethanolamines (NAEs) N-arachidonoylethanolamine (AEA), N-oleoylethanolamide (OEA) and N-palmitoylethanolamide (PEA) increase in women at high risk for preterm birth (PTB) and whether these could be used to predict preterm delivery and if so, how they compare with current methods.. Prospective cohort study.. A large UK teaching hospital.. 217 pregnant women were recruited between 24 and 34 gestational weeks at 'high-risk' for PTB, recruited from a prematurity prevention clinic or antenatal wards.. Plasma AEA, OEA, and PEA concentrations were measured using ultra-high performance liquid chromatography-tandem mass spectrometry whilst FAAH enzyme activity was measured by fluorometric radiometric assay and CL by ultrasound scan. The clinical usefulness of these measurements were determined by ROC and multivariate analyses.. AEA and PEA concentrations were significantly higher in women who delivered prematurely. An AEA concentration >1.095 nM predicted PTB, the gestational age at delivery and the recruitment to delivery interval (RTDI). A PEA concentration >17.50 nM only predicted PTB; FAAH enzyme activity was not related to these changes. Multivariate analysis (all variables) generated an equation to accurately predict the RTDI.. A single plasma AEA or PEA measurement can predict PTB. A single AEA measurement predicts the gestational age of delivery and the remaining period of pregnancy with reasonable accuracy and better than existing conventional tests thus offering a better window for primary prevention of PTB. Topics: Amides; Amidohydrolases; Arachidonic Acids; Cohort Studies; Endocannabinoids; Ethanolamines; Female; Gestational Age; Humans; Obstetric Labor, Premature; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Pregnancy; Premature Birth; Prospective Studies; Risk Assessment; United Kingdom | 2019 |
Interferon γ treatment increases endocannabinoid and related N-acylethanolamine levels in T84 human colon carcinoma cells.
Endocannabinoids and related N-acylethanolamines (NAEs) are involved in regulation of gut function, but relatively little is known as to whether inflammatory cytokines such as IFNγ affect their levels. We have investigated this in vitro using cultures of T84 colon cancer cells.. T84 cells, when cultured in monolayers, differentiate to form adult colonic crypt-like cells with excellent permeability barrier properties. The integrity of the permeability barrier in these monolayers was measured using transepithelial electrical resistance (TEER). NAE levels were determined by ultra-performance liquid chromatography-tandem mass spectrometric analysis. Expression of the enzymes involved in NAE and 2-arachidonoylglycerol (2-AG) turnover were assessed with qPCR.. IFNγ treatment for 8 or 24 h increased levels of both endocannabinoids (anandamide and 2-AG) and the related NAEs. The treatment did not affect the rate of hydrolysis of either anandamide or palmitoylethanolamide by intact cells, and in both cases, fatty acid amide hydrolase (FAAH) rather than NAE-hydrolysing acid amidase (NAAA) was mainly responsible for the hydrolysis of these NAEs. IFNγ treatment reduced the TEER of the cells in a manner that was not prevented by inhibition of either FAAH or NAAA but was partially reversed by apical administration of the NAE palmitoylethanolamide.. IFNγ treatment mobilized endocannabinoid and related NAE levels in T84 cells. However, blockade of anandamide or NAE hydrolysis was insufficient to negate the deleterious effects of this cytokine upon the permeability barrier of the cell monolayers. Topics: Amides; Arachidonic Acids; Cell Culture Techniques; Cell Line, Tumor; Chromatography, High Pressure Liquid; Colonic Neoplasms; Endocannabinoids; Ethanolamines; Glycerides; Humans; Interferon-gamma; Ionomycin; Palmitic Acids; Polyunsaturated Alkamides | 2019 |
Familial abnormalities of endocannabinoid signaling in schizophrenia.
Epidemiological and experimental evidence suggests that the endocannabinoid system plays a pathophysiological role in schizophrenia. This is reflected by elevated cerebrospinal levels of the endocannabinoid anandamide in schizophrenia and its initial prodromal states.. We analyzed plasma concentrations of anandamide, 2-arachidonoyl-sn-glycerol, palmitoylethanolamide and oleoylethanolamide from 25 twin pairs discordant for schizophrenia, six discordant for bipolar disorder and eight healthy twin pairs to determine hereditary traits.. Twin pairs discordant for schizophrenia or bipolar disorder had significantly higher levels of anandamide and palmitoylethanolamide compared to healthy twins (both P < 0.002). Non-affected twins discordant for schizophrenia, who developed a psychotic disorder within 5 years follow-up showed lower anandamide (P = 0.042) and 2-arachidonoyl-sn-glycerol levels (P = 0.049) than twins who remained healthy.. We suggest that the protective upregulation of endocannabinoid signalling reflects either a hereditary trait or mirrors a modulating response to genetically influenced cerebral function involving, e.g., other neurotransmitters or energy metabolism. Topics: Adult; Amides; Arachidonic Acids; Bipolar Disorder; Endocannabinoids; Ethanolamines; Female; Genetic Predisposition to Disease; Glycerides; Humans; Male; Middle Aged; Palmitic Acids; Polyunsaturated Alkamides; Prodromal Symptoms; Psychotic Disorders; Schizophrenia; Signal Transduction; Up-Regulation; Young Adult | 2019 |
Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia.
In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produced long-lasting behavioral alterations such as social withdrawal and cognitive impairment in the social interaction test and in the novel object recognition test, respectively. At the molecular level, an increased cannabinoid receptor type-1 (CB1) mRNA and protein expression, which might be due to reduction in DNA methylation at the gene promoter in the prefrontal cortex (PFC), coincided with deficits in the social interaction test and in the novel object recognition test in MAM rats. Both the schizophrenia-like phenotype and altered transcriptional regulation of CB1 receptors were reversed by peripubertal treatment (from PND 19 to PND 39) with the non-psychotropic phytocannabinoid cannabidiol (30 mg/kg/day), or, in part, by treatment with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day), but not with haloperidol (0.6 mg/kg/day). These results suggest that early treatment with cannabidiol may prevent both the appearance of schizophrenia-like deficits as well as CB1 alterations in the PFC at adulthood, supporting that peripubertal cannabidiol treatment might be protective against MAM insult. Topics: Amides; Animals; Arachidonic Acids; Cannabidiol; Disease Models, Animal; Endocannabinoids; Ethanolamines; Female; Glycerides; Hippocampus; Interpersonal Relations; Male; Methylazoxymethanol Acetate; Motor Activity; Oleic Acids; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Prefrontal Cortex; Pregnancy; Prenatal Exposure Delayed Effects; Puberty; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Recognition, Psychology; RNA, Messenger; Schizophrenia | 2019 |
Impaired anandamide/palmitoylethanolamide signaling in hippocampal glutamatergic neurons alters synaptic plasticity, learning, and emotional responses.
Endocannabinoid signaling via anandamide (AEA) is implicated in a variety of neuronal functions and considered a promising therapeutic target for numerous emotion-related disorders. The major AEA degrading enzyme is fatty acid amide hydrolase (FAAH). Genetic deletion and pharmacological inhibition of FAAH reduce anxiety and improve emotional responses and memory in rodents and humans. Complementarily, the mechanisms and impact of decreased AEA signaling remain to be delineated in detail. In the present study, using the Cre/loxP system combined with an adeno-associated virus (AAV)-mediated delivery system, FAAH was selectively overexpressed in hippocampal CA1-CA3 glutamatergic neurons of adult mice. This approach led to specific FAAH overexpression at the postsynaptic site of CA1-CA3 neurons, to increased FAAH enzymatic activity, and, in consequence, to decreased hippocampal levels of AEA and palmitoylethanolamide (PEA), but the levels of the second major endocannabinoid 2-arachidonoyl glycerol (2-AG) and of oleoylethanolamide (OEA) were unchanged. Electrophysiological recordings revealed an enhancement of both excitatory and inhibitory synaptic activity and of long-term potentiation (LTP). In contrast, excitatory and inhibitory long-term depression (LTD) and short-term synaptic plasticity, apparent as depolarization-induced suppression of excitation (DSE) and inhibition (DSI), remained unaltered. These changes in hippocampal synaptic activity were associated with an increase in anxiety-like behavior, and a deficit in object recognition memory and in extinction of aversive memory. This study indicates that AEA is not involved in hippocampal short-term plasticity, or eLTD and iLTD, but modulates glutamatergic transmission most likely via presynaptic sites, and that disturbances in this process impair learning and emotional responses. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Emotions; Endocannabinoids; Ethanolamines; Glutamic Acid; Glycerides; Hippocampus; Learning; Long-Term Potentiation; Long-Term Synaptic Depression; Male; Memory; Mice; Neuronal Plasticity; Neurons; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Synaptic Transmission; Up-Regulation | 2019 |
Buzzkill: the consequences of depleting anandamide in the hippocampus.
Topics: Amides; Arachidonic Acids; Endocannabinoids; Ethanolamines; Hippocampus; Neuronal Plasticity; Neurons; Palmitic Acids; Polyunsaturated Alkamides | 2019 |
Serum Endocannabinoid and Mood Changes after Exercise in Major Depressive Disorder.
The endocannabinoid (eCB) system is implicated in the pathophysiology of depression and is responsive to acute exercise in healthy adults.. We aimed to describe acute changes in serum eCB across a prescribed moderate (MOD) and a self-selected/preferred (PREF) intensity exercise session in women with major depressive disorder (MDD) and determine relationships between changes in eCB and mood states.. Women with MDD (n = 17) exercised in separate sessions for 20 min on a cycle ergometer at both MOD or PREF in a within-subjects design. Blood was drawn before and within 10 min after exercise. Serum concentrations of eCB (anandamide [AEA], 2-arachidonoylglycerol) and related lipids (palmitoylethanolamine, oleoylethanolamine, 2-oleoylglycerol) were quantified using stable isotope-dilution, liquid chromatography/mass spectrometry/mass spectrometry. The profile of mood states and state-trait anxiety inventory (state only) were completed before, 10 min and 30 min postexercise.. Significant elevations in AEA (P = 0.013) and oleoylethanolamine (P = 0.024) occurred for MOD (moderate effect sizes: Cohen's d = 0.58 and 0.41, respectively). Significant (P < 0.05) moderate negative associations existed between changes in AEA and mood states for MOD at 10 min (depression, confusion, fatigue, total mood disturbance [TMD] and state anxiety) and 30 min postexercise (confusion, TMD and state anxiety). Significant (P < 0.05) moderate negative associations existed between 2-arachidonoylglycerol and mood states at 10 min (depression and confusion) and 30 min postexercise (confusion and TMD). Changes in eCB or related lipids or eCB-mood relationships were not found for PREF.. Given the broad, moderate-strength relationships between improvements in mood states and eCB increases after MOD, it is plausible that the eCB system contributes to the mood-enhancing effects of prescribed acute exercise in MDD. Alternative mechanisms are likely involved in the positive mood state effects of preferred exercise. Topics: Adult; Affect; Amides; Arachidonic Acids; Depressive Disorder, Major; Endocannabinoids; Ethanolamines; Exercise; Female; Glycerides; Humans; Middle Aged; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides | 2019 |
Role of pannexin-1 in the cellular uptake, release and hydrolysis of anandamide by T84 colon cancer cells.
The large pore ion channel pannexin-1 (Panx1) has been reported to play a role in the cellular uptake and release of anandamide (AEA) in the hippocampus. It is not known whether this is a general mechanism or limited to the hippocampus. We have investigated this pharmacologically using T84 colon cancer cells. The cells expressed Panx1 at the mRNA level, and released ATP in a manner that could be reduced by treatment with the Panx1 inhibitors carbenoxolone and mefloquine and the Panx1 substrate SR101. However, no significant effects of these compounds upon the uptake or hydrolysis of exogenously applied AEA was seen. Uptake by T84 cells of the other main endocannabinoid 2-arachidonoylglycerol and the AEA homologue palmitoylethanolamide was similarly not affected by carbenoxolone or mefloquine. Total release of tritium from [ Topics: Amides; Arachidonic Acids; Biological Transport; Carbenoxolone; Cell Line, Tumor; Colonic Neoplasms; Connexins; Endocannabinoids; Ethanolamines; Hippocampus; Humans; Hydrolysis; Mefloquine; Nerve Tissue Proteins; Neuroblastoma; Palmitic Acids; PC-3 Cells; Polyunsaturated Alkamides | 2019 |
Determination of endocannabinoids and endocannabinoid-like substances in human K3EDTA plasma - LC-MS/MS method validation and pre-analytical characteristics.
The determination of endocannabinoids and endocannabinoid-like substances in biological human samples is a vibrant field of research with great significance due to postulated relevance of these substances in diseases such as Alzheimer's disease, multiple sclerosis, cancer and cardiovascular diseases. For a possible use as biomarker in early prediction or diagnosis of a disease as well as examination of a successful treatment, the valid determination of the analytes in common accessible human samples, such as plasma or serum, is of great importance. A method for the determination of arachidonoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, 1-arachidonoyl glycerol and 2-arachidonoyl glycerol in human K3EDTA plasma using liquid-liquid-extraction in combination with liquid chromatography-tandem-mass spectrometry has been developed and validated for the quantification of the aforementioned analytes. Particular emphasis was placed on the chromatographic separation of the isomers 1-arachidonoyl glycerol and 2-arachidonoyl glycerol, arachidonoyl ethanolamide and O-arachidonoyl ethanolamine (virodhamine) as well as oleoyl ethanolamide and vaccenic acid ethanolamide. During the validation process, increasing concentrations of 1-arachidonoyl glycerol and 2-arachidonoyl glycerol while storing plasma samples were observed. In-depth investigation of pre-analytical sample handling revealed rising concentrations for both analytes in plasma and for arachidonoyl ethanolamide, oleoyl ethanolamide and palmitoyl ethanolamide in whole blood, dependent on the period and temperature of storage. Prevention of the increase in concentration was not possible, raising the question whether human K3EDTA plasma is suitable for the determination of endocannabinoids and endocannabinoid-like substances. Especially the common practice to calculate the concentration of 2-arachidonoyl glycerol as sum of 1-arachidonoyl glycerol and 2-arachidonoyl glycerol is highly questionable because the concentrations of both analytes increase unequally while storing the plasma samples in the fridge. Topics: Amides; Anticoagulants; Arachidonic Acids; Chromatography, High Pressure Liquid; Edetic Acid; Endocannabinoids; Ethanolamines; Glycerides; Humans; Liquid-Liquid Extraction; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Specimen Handling; Tandem Mass Spectrometry | 2019 |
FAAH, but not MAGL, inhibition modulates acute TLR3-induced neuroimmune signaling in the rat, independent of sex.
Toll-like receptor (TLR)3 is a key component of the innate immune response to viral infection. The present study firstly examined whether sex differences exist in TLR3-induced inflammatory, endocrine, and sickness responses. The data revealed that TLR3-induced expression of interferon- or NFkB-inducible genes (IFN-α/β, IP-10, or TNF-α), either peripherally (spleen) or centrally (hypothalamus), did not differ between male and female rats, with the exception of TLR3-induced IFN-α expression in the spleen of female, but not male, rats 8 hr post TLR3 activation. Furthermore, TLR3 activation increased plasma corticosterone levels, induced fever, and reduced locomotor activity and body weight - effects independent of sex. Thus, the acute-phase inflammatory, endocrine, and sickness responses to TLR3 activation exhibit minimal sex-related differences. A further aim of this study was to examine whether enhancing endocannabinoid tone - namely, 2-arachidonylglycerol (2-AG) or N-arachidonoylethanolamine (AEA), exhibited similar effects on TLR3-induced inflammatory responses in male versus female rats. Systemic administration of the monoacylglycerol lipase (MAGL) inhibitor MJN110 and subsequent increases in 2-AG levels did not alter the TLR3-induced increase in IP-10, IRF7, or TNF-α expression in the spleen or the hypothalamus of male or female rats. In contrast, the fatty acid amide hydrolase (FAAH) inhibitor URB597 increased levels of AEA and related N-acylethanolamines, an effect associated with the attenuation of TLR3-induced inflammatory responses in the hypothalamus, but not the spleen, of male and female rats. These data support a role for FAAH, but not MAGL, substrates in the modulation of TLR3-induced neuroinflammatory responses, effects independent of sex. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Body Temperature; Carbamates; Chemokine CXCL10; Corticosterone; Endocannabinoids; Estradiol; Ethanolamines; Female; Glycerides; Immunologic Factors; Interferons; Male; Monoacylglycerol Lipases; NF-kappa B; Oleic Acids; Palmitic Acids; Poly I-C; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Sex Factors; Signal Transduction; Succinimides; Toll-Like Receptor 3 | 2018 |
The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive behaviors to acute and chronic stress in rodents.
Enhancing endogenous cannabinoid (eCB) signaling has been considered as a potential strategy for the treatment of stress-related conditions. Fatty acid amide hydrolase (FAAH) represents the primary degradation enzyme of the eCB anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). This study describes a potent reversible FAAH inhibitor, SSR411298. The drug acts as a selective inhibitor of FAAH, which potently increases hippocampal levels of AEA, OEA and PEA in mice. Despite elevating eCB levels, SSR411298 did not mimic the interoceptive state or produce the behavioral side-effects (memory deficit and motor impairment) evoked by direct-acting cannabinoids. When SSR411298 was tested in models of anxiety, it only exerted clear anxiolytic-like effects under highly aversive conditions following exposure to a traumatic event, such as in the mouse defense test battery and social defeat procedure. Results from experiments in models of depression showed that SSR411298 produced robust antidepressant-like activity in the rat forced-swimming test and in the mouse chronic mild stress model, restoring notably the development of inadequate coping responses to chronic stress. This preclinical profile positions SSR411298 as a promising drug candidate to treat diseases such as post-traumatic stress disorder, which involves the development of maladaptive behaviors. Topics: Acute Disease; Amides; Amidohydrolases; Animals; Anti-Anxiety Agents; Anxiety Disorders; Arachidonic Acids; Cannabinoid Receptor Agonists; Carbamates; Chronic Disease; Dioxanes; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Female; Gene Expression; Male; Mice; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats, Sprague-Dawley; Receptors, Cannabinoid; Stress, Psychological | 2018 |
Treatment of anorexia nervosa with palmitoylethanoamide.
Topics: Amides; Animals; Anorexia Nervosa; Arachidonic Acids; Dietary Fats; Dietary Supplements; Endocannabinoids; Ethanolamines; Feeding Behavior; Humans; Lipids; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2018 |
Serum endocannabinoids in assessing pain in patients with chronic pancreatitis and in those with pancreatic ductal adenocarcinoma.
The endocannabinoid system plays a substantial role in analgesia.. To analyze N-arachidonoylethanolamine (AEA), N-oleoylethanolamine (OEA), linoleoyl ethanolamide (LEA), α-linoleoyl ethanolamine (α-LNEA), N-palmitoylethanolamine (PEA) and N-stearoyl ethanolamine (SEA) in two groups of patients having chronic pancreatic diseases.. Twenty-six patients with chronic pancreatitis, 26 patients with pancreatic ductal adenocarcinoma and 36 healthy subjects were studied. The visual analogic scale (VAS) was used for assessing pain immediately before the venipuncture to obtain blood in all subjects. Six endocannabinoids were measured in serum of the patients enrolled.. Only OEA, LEA and PEA serum levels were significantly higher in patients with pain as compared to those without. Using the cutoff values, the sensitivity and specificity of the various endocannabinoids in evaluating pain in patients with chronic pancreatitis and in those with pancreatic ductal adenocarcinoma were: 44.2% and 95.6% for AEA, 83.7% and 73.3% for LEA, 88.4% and 91.1% for LNEA, 81.4% and 82.2% for OEA, 81.4% and 88.9% for PEA, 86.0% and 88.9% for SEA, respectively.. Endocannabinoids are not useful in assessing pain in patients with chronic pancreatic diseases and they cannot replace a simple method such as VAS for assessing the pain and its intensity. Topics: Abdominal Pain; Adolescent; Adult; Aged; Aged, 80 and over; Amides; Arachidonic Acids; Cancer Pain; Carcinoma, Pancreatic Ductal; Case-Control Studies; Endocannabinoids; Ethanolamines; Female; Humans; Linoleic Acids; Male; Middle Aged; Oleic Acids; Pain Measurement; Palmitic Acids; Pancreatic Neoplasms; Pancreatitis, Chronic; Polyunsaturated Alkamides; Predictive Value of Tests; ROC Curve; Stearic Acids; Young Adult | 2017 |
Plasma concentrations of oleoylethanolamide and other acylethanolamides are altered in alcohol-dependent patients: effect of length of abstinence.
Acylethanolamides are a family of endogenous lipid mediators that are involved in physiological and behavioral processes associated with addiction. Recently, oleoylethanolamide (OEA) has been reported to reduce alcohol intake and relapse in rodents but the contribution of OEA and other acylethanolamides in alcohol addiction in humans is unknown. The present study is aimed to characterize the plasma acylethanolamides in alcohol dependence. Seventy-nine abstinent alcohol-dependent subjects (27 women) recruited from outpatient treatment programs and age-/sex-/body mass-matched healthy volunteers (28 women) were clinically assessed with the diagnostic interview PRISM according to the DSM-IV-TR after blood extraction for quantification of acylethanolamide concentrations in the plasma. Our results indicate that all acylethanolamides were significantly increased in alcohol-dependent patients compared with control subjects (p < 0.001). A logistic model based on these acylethanolamides was developed to distinguish alcohol-dependent patients from controls and included OEA, arachidonoylethanolamide (AEA) and docosatetraenoylethanolamide (DEA), providing a high discriminatory power according to area under the curve [AUC = 0.92 (95%CI: 0.87-0.96), p < 0.001]. Additionally, we found a significant effect of the duration of alcohol abstinence on the concentrations of OEA, AEA and DEA using a regression model (p < 0.05, p < 0.01 and p < 0.001, respectively), which was confirmed by a negative correlation (rho = -0.31, -0.40 and -0.44, respectively). However, acylethanolamides were not influenced by the addiction alcohol severity, duration of problematic alcohol use or diagnosis of psychiatric comorbidity. Our results support the preclinical studies and suggest that OEA, AEA and DEA are altered in alcohol-dependence during abstinence and that might act as potential markers for predicting length of alcohol abstinence. Topics: Adult; Alcohol Abstinence; Alcoholism; Amides; Arachidonic Acids; Case-Control Studies; Dehydroepiandrosterone; Endocannabinoids; Ethanolamines; Female; Humans; Male; Middle Aged; Oleic Acids; Palmitic Acids; Polyethylene Glycols; Polyunsaturated Alkamides; Stearic Acids; Time Factors | 2017 |
N-acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N-acylethanolamine levels and macrophage activation.
N-acylethanolamines (NAEs) such as N-palmitoylethanolamine and anandamide are endogenous bioactive lipids having numerous functions, including the control of inflammation. Their levels and therefore actions can be controlled by modulating the activity of two hydrolytic enzymes, N-acylethanolamine-hydrolyzing acid amidase (NAAA) and fatty acid amide hydrolase (FAAH). As macrophages are key to inflammatory processes, we used lipopolysaccharide-activated J774 macrophages, as well as primary mouse alveolar macrophages, to study the effect of FAAH and NAAA inhibition, using PF-3845 and AM9053 respectively, on macrophage activation and NAE levels measured by HPLC-MS. Markers of macrophage activation were measured by qRT-PCR and ELISA. Activation of macrophages decreased NAAA expression and NAE hydrolytic activity. FAAH and NAAA inhibition increased the levels of the different NAEs, although with different magnitudes, whether in control condition or following LPS-induced macrophage activation. Both inhibitors reduced several markers of macrophage activation, such as mRNA expression of inflammatory mediators, as well as cytokine and prostaglandin production, with however some differences between FAAH and NAAA inhibition. Most of the NAEs tested - including N-docosatetraenoylethanolamine and N-docosahexaenoylethanolamine - also reduced LPS-induced mRNA expression of inflammatory mediators, again with differences depending on the marker and the NAE, thus offering a potential explanation for the differential effect of the inhibitors on macrophage activation markers. In conclusion, we show different and complementary effects of NAE on lipopolysaccharide-induced macrophage activation. Our results support an important role for inhibition of NAE hydrolysis and NAAA inhibition in particular in controlling macrophage activation, and thus inflammation. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Endocannabinoids; Ethanolamines; Gene Expression Regulation, Enzymologic; Humans; Inflammation; Lipopolysaccharides; Macrophage Activation; Macrophages, Alveolar; Mice; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyridines | 2017 |
Involvement of the endocannabinoid system in the physiological response to transient common carotid artery occlusion and reperfusion.
The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) may trigger a physiological response in an attempt to preserve tissue and function integrity. There are several candidate molecules among which the endocannabinoid system (ECS) and/or peroxisome-proliferator activated receptor-alpha (PPAR-alpha) may play a role in modulating oxidative stress and inflammation. The aims of the present study are to evaluate whether the ECS, the enzyme cyclooxygenase-2 (COX-2) and PPAR-alpha are involved during BCCAO/R in rat brain, and to identify possible markers of the ongoing BCCAO/R-induced challenge in plasma.. Adult Wistar rats underwent BCCAO/R with 30 min hypoperfusion followed by 60 min reperfusion. The frontal and temporal-occipital cortices and plasma were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) to determine concentrations of endocannabinoids (eCBs) and related molecules behaving as ligands of PPAR-alpha, and of oxidative-stress markers such as lipoperoxides, while Western Blot and immunohistochemistry were used to study protein expression of cannabinoid receptors, COX-2 and PPAR-alpha. Unpaired Student's t-test was used to evaluate statistical differences between groups.. The acute BCCAO/R procedure is followed by increased brain tissue levels of the eCBs 2-arachidonoylglycerol and anandamide, palmitoylethanolamide, an avid ligand of PPAR-alpha, lipoperoxides, type 1 (CB1) and type 2 (CB2) cannabinoid receptors, and COX-2, and decreased brain tissue concentrations of docosahexaenoic acid (DHA), one of the major targets of lipid peroxidation. In plasma, increased levels of anandamide and lipoperoxides were observed.. The BCCAO/R stimulated early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The observed variations suggest that the positive modulation of the ECS and the increase of proinflammatory substances are directly correlated events. Increase of plasmatic levels of anandamide and lipoperoxides further suggests that dysregulation of these molecules may be taken as an indicator of an ongoing hypoperfusion/reperfusion challenge. Topics: Amides; Animals; Arachidonic Acids; Brain Ischemia; Carotid Artery, Common; Cerebrovascular Disorders; Cyclooxygenase 2; Docosahexaenoic Acids; Endocannabinoids; Ethanolamines; Frontal Lobe; Gene Expression Regulation; Glycerides; Lipid Peroxidation; Lipid Peroxides; Male; Occipital Lobe; Oxidative Stress; Palmitic Acids; Polyunsaturated Alkamides; PPAR alpha; Rats; Rats, Wistar; Reperfusion Injury; Temporal Lobe | 2017 |
Responses of peripheral endocannabinoids and endocannabinoid-related compounds to hedonic eating in obesity.
Hedonic eating occurs independently from homeostatic needs prompting the ingestion of pleasurable foods that are typically rich in fat, sugar and/or salt content. In normal weight healthy subjects, we found that before hedonic eating, plasma levels of 2-arachidonoylglycerol (2-AG) were higher than before nonhedonic eating, and although they progressively decreased after food ingestion in both eating conditions, they were significantly higher in hedonic eating. Plasma levels of anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), instead, progressively decreased in both eating conditions without significant differences. In this study, we investigated the responses of AEA, 2-AG, OEA and PEA to hedonic eating in obese individuals.. Peripheral levels of AEA, 2-AG, OEA and PEA were measured in 14 obese patients after eating favourite (hedonic eating) and non-favourite (nonhedonic eating) foods in conditions of no homeostatic needs.. Plasma levels of 2-AG increased after eating the favourite food, whereas they decreased after eating the non-favourite food, with the production of the endocannabinoid being significantly enhanced in hedonic eating. Plasma levels of AEA decreased progressively in nonhedonic eating, whereas they showed a decrease after the exposure to the favourite food followed by a return to baseline values after eating it. No significant differences emerged in plasma OEA and PEA responses to favourite and non-favourite food.. Present findings compared with those obtained in our previously studied normal weight healthy subjects suggest deranged responses of endocannabinoids to food-related reward in obesity. Topics: Adult; Amides; Arachidonic Acids; Body Mass Index; Dietary Carbohydrates; Dietary Fats; Dietary Proteins; Endocannabinoids; Energy Intake; Ethanolamines; Feeding Behavior; Female; Glycerides; Humans; Male; Middle Aged; Nutritive Value; Obesity; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Satiation; Young Adult | 2016 |
Effects of chronic exercise on the endocannabinoid system in Wistar rats with high-fat diet-induced obesity.
The endocannabinoid system is dysregulated during obesity in tissues involved in the control of food intake and energy metabolism. We examined the effect of chronic exercise on the tissue levels of endocannabinoids (eCBs) and on the expression of genes coding for cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) (Cnr1 and Cnr2, respectively) in the subcutaneous (SAT) and visceral adipose tissues and in the soleus and extensor digitorim longus (EDL) muscles, in rats fed with standard or high-fat diet. Twenty-eight male Wistar rats were placed on high-fat diet or standard diet (HFD and Ctl groups, respectively) during 12 weeks whereafter half of each group was submitted to an exercise training period of 12 weeks (HFD + training and Ctl + training). Tissue levels of eCBs were measured by LC-MS while expressions of genes coding for CB1 and CB2 receptors were investigated by qPCR. High-fat diet induced an increase in anandamide (AEA) levels in soleus and EDL (p < 0.02). In soleus of the HFD group, these changes were accompanied by elevated Cnr1 messenger RNA (mRNA) levels (p < 0.05). In EDL, exercise training allowed to reduce significantly this diet-induced AEA increase (p < 0.005). 2-Arachidonoylglycerol (2-AG) levels were decreased and increased by high-fat diet in SAT and EDL, respectively (p < 0.04), but not affected by exercise training. Unlike the HFD + training group, 2-AG levels in soleus were also decreased in the HFD group compared to Ctl (p < 0.04). The levels of eCBs and Cnr1 expression are altered in a tissue-specific manner following a high-fat diet, and chronic exercise reverses some of these alterations. Topics: Amides; Animals; Arachidonic Acids; Body Composition; Diet, High-Fat; Endocannabinoids; Ethanolamines; Gene Expression Regulation; Glycerides; Hyperglycemia; Intra-Abdominal Fat; Male; Motor Activity; Muscle, Skeletal; Obesity; Oleic Acids; Organ Specificity; Palmitic Acids; Polyunsaturated Alkamides; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Subcutaneous Fat, Abdominal; TRPV Cation Channels; Weight Gain | 2016 |
Elevated Systemic Levels of Endocannabinoids and Related Mediators Across the Menstrual Cycle in Women With Endometriosis.
Cannabinoids and modulators of the endocannabinoid system affect specific mechanisms that are critical to the establishment and development of endometriosis. The aim of this study was to measure the systemic levels of endocannabinoids and related mediators in women with and without endometriosis and to investigate whether such levels correlated with endometriosis-associated pain. Plasma and endometrial biopsies were obtained from women with a laparoscopic diagnosis of endometriosis (n = 27) and no endometrial pathology (n = 29). Plasma levels of endocannabinoids (N-arachidonoylethanolamine [AEA] and 2-arachidonoylglycerol [2-AG]) and related mediators (N-oleoylethanolamine [OEA] and N-palmitoylethanolamine [PEA]), messenger RNA expression of some of their receptors (cannabinoid receptor type 1 [CB1], CB2, transient receptor potential vanilloid type [TRPV1]), and the enzymes involved in the synthesis (N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D [NAPE-PLD]) and degradation (fatty acid amide hydrolase 1 [FAAH]) of AEA, OEA, and PEA were evaluated in endometrial stromal cells. The systemic levels of AEA, 2-AG, and OEA were elevated in endometriosis in the secretory phase compared to controls. The expression of CB1 was higher in secretory phase endometrial stromal cells of controls versus endometriosis. Similar expression levels of CB2, TRPV1, NAPE-PLD, and FAAH were detected in controls and endometriosis. Patients with moderate-to-severe dysmenorrhea and dyspareunia showed higher AEA and PEA levels than those with low-to-moderate pain symptoms, respectively. The association of increased circulating AEA and 2-AG with decreased local CB1 expression in endometriosis suggests a negative feedback loop regulation, which may impair the capability of these mediators to control pain. These preliminary data suggest that the pharmacological manipulation of the action or levels of these mediators may offer an alternative option for the management of endometriosis-associated pain. Topics: Adult; Amides; Amidohydrolases; Arachidonic Acids; Endocannabinoids; Endometriosis; Ethanolamines; Female; Glycerides; Humans; Menstrual Cycle; Middle Aged; Oleic Acids; Palmitic Acids; Phospholipase D; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; RNA, Messenger; Stromal Cells; TRPV Cation Channels; Young Adult | 2016 |
Endovanilloid control of pain modulation by the rostroventromedial medulla in an animal model of diabetic neuropathy.
The involvement of transient receptor vanilloid type-1 (TRPV1) channels in pain modulation by the brain remains understudied. The rostroventromedial medulla (RVM) plays a key role in conveying to the spinal cord pain modulatory influences triggered in higher brain centres, with co-existence of inhibitory (antinociceptive) and facilitatory (pronociceptive) effects. In spite of some reports of TRPV1 expression in the RVM, it remains unknown if endovanilloid signalling plays a direct role in local pain modulation. Here we used a model of diabetic neuropathy, the streptozotocin (STZ)-diabetic rat, to study the role of endovanilloid signalling in RVM-mediated pain modulation during chronic pain. Four weeks after diabetes induction, the levels of TRPV1 mRNA and fatty acid amide hydrolase (FAAH), a crucial enzyme for endovanilloid catabolism, in the RVM of STZ-diabetic rats were higher than control. The RVM of STZ-diabetic rats presented decreased levels of several TRPV1 endogenous ligands, namely anandamide (AEA), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). Administration of capsaicin (a TRPV1 agonist) into the RVM decreased nociceptive behavioural responses in the inflammatory phase of the formalin test (phase 2). These findings suggest that diabetic neuropathy induces plastic changes of RVM endovanilloid signalling, indicating that TRPV1 may be a putative target for pain modulation in this chronic pain condition. Topics: Amides; Amidohydrolases; Analgesics, Non-Narcotic; Animals; Arachidonic Acids; Capsaicin; Chronic Pain; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Endocannabinoids; Ethanolamines; Formaldehyde; Male; Medulla Oblongata; Nociceptive Pain; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats, Wistar; RNA, Messenger; TRPV Cation Channels | 2016 |
Bisphenol A Induces Fatty Liver by an Endocannabinoid-Mediated Positive Feedback Loop.
The xenoestrogen bisphenol A (BPA) is a widespread plasticizer detectable within several ecosystems. BPA is considered a metabolic disruptor, affecting different organs; however, little is known about its mechanism of action in the liver, in which it triggers triglyceride accumulation. Adult zebrafish (Danio rerio) exposed to BPA developed hepatosteatosis, which was associated with an increase in the liver levels of the obesogenic endocannabinoids 2-arachidonoylglycerol and anandamide and a concomitant decrease in palmitoylethanolamide. These changes were associated with variations in the expression of key endocannabinoid catabolic and metabolic enzymes and an increase in the expression of the endocannabinoid receptor cnr1. Acute and chronic in vitro treatments with nano- and micromolar BPA doses showed increased anandamide levels in line with decreased activity of fatty acid amide hydrolase, the main anandamide hydrolytic enzyme, and induced triglyceride accumulation in HHL-5 cells in a CB1-dependent manner. We conclude that BPA is able to produce hepatosteatosis in zebrafish and human hepatocytes by up-regulating the endocannabinoid system. Topics: Amides; Animals; Arachidonic Acids; Benzhydryl Compounds; Cell Line; Endocannabinoids; Endocrine Disruptors; Ethanolamines; Fatty Liver; Feedback, Physiological; Glycerides; Hepatocytes; Humans; Liver; Palmitic Acids; Phenols; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Triglycerides; Zebrafish; Zebrafish Proteins | 2016 |
A simple method for simultaneous determination of N-arachidonoylethanolamine, N-oleoylethanolamine, N-palmitoylethanolamine and 2-arachidonoylglycerol in human cells.
The endocannabinoid system has been considered as a target for pharmacological intervention. Accordingly, inhibition of fatty acid amide hydrolase (FAAH), a degrading enzyme of the endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) as well as of the endocannabinoid-like substances N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA), can cause augmented endogenous cannabinoid tone. Using liquid chromatography coupled with positive electrospray ionisation mass spectrometry, we herein describe a method to simultaneously quantify levels of AEA, OEA, PEA and 2-AG in cultured cells. The procedure was developed according to the FDA guidelines for bioanalytical methods validation. The limits of quantification (LOQs) were 0.05 pmol for AEA, 0.09 pmol for OEA, 0.10 pmol for PEA and 0.80 pmol for 2-AG when molecular ion monitoring was used. In H460 human lung carcinoma cells, basal levels of all four analytes ranged between 2 and 17 pmol mg(-1) protein with PEA showing the lowest and OEA the highest concentrations. Endocannabinoid levels observed in mesenchymal stem cells were of the same order of magnitude when compared to those in H460 human lung carcinoma cells. Topics: Amides; Arachidonic Acids; Cell Line, Tumor; Chromatography, Liquid; Endocannabinoids; Ethanolamines; Glycerides; Humans; Limit of Detection; Lung Neoplasms; Mass Spectrometry; Mesenchymal Stem Cells; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Reproducibility of Results | 2015 |
Deranged endocannabinoid responses to hedonic eating in underweight and recently weight-restored patients with anorexia nervosa.
A dysregulation of reward mechanisms was suggested in the pathophysiology of anorexia nervosa (AN), but the role of the endogenous mediators of reward has been poorly investigated. Endocannabinoids, including anandamide and 2-arachidonoylglycerol, and the endocannabinoid-related compounds oleoylethanolamide and palmitoylethanolamide modulate food-related and unrelated reward. Hedonic eating, which is the consumption of food just for pleasure and not homeostatic need, is a suitable paradigm to explore food-related reward.. We investigated responses of endocannabinoids and endocannabinoid-related compounds to hedonic eating in AN.. Peripheral concentrations of anandamide, 2-arachidonoylglycerol, oleoylethanolamide, and palmitoylethanolamide were measured in 7 underweight and 7 weight-restored AN patients after eating favorite and nonfavorite foods in the condition of no homeostatic needs, and these measurements were compared with those of previously studied healthy control subjects.. 1) In healthy controls, plasma 2-arachidonoylglycerol concentrations decreased after both types of meals but were significantly higher in hedonic eating; in underweight AN patients, 2-arachidonoylglycerol concentrations did not show specific time patterns after eating either favorite or nonfavorite foods, whereas in weight-restored patients, 2-arachidonoylglycerol concentrations showed similar increases with both types of meals. 2) Anandamide plasma concentrations exhibited no differences in their response patterns to hedonic eating in the groups. 3) Compared with 2-arachidonoylglycerol, palmitoylethanolamide concentrations exhibited an opposite response pattern to hedonic eating in healthy controls; this pattern was partially preserved in underweight AN patients but not in weight-restored ones. 4) Like palmitoylethanolamide, oleoylethanolamide plasma concentrations tended to be higher in nonhedonic eating than in hedonic eating in healthy controls; moreover, no difference between healthy subjects and AN patients was observed for food-intake-induced changes in oleoylethanolamide concentrations.. These data confirm that endocannabinoids and endocannabinoid-related compounds are involved in food-related reward and suggest a dysregulation of their physiology in AN. This trial was registered at ISRCTN.org as ISRCTN64683774. Topics: Adolescent; Adult; Amides; Anorexia Nervosa; Arachidonic Acids; Case-Control Studies; Endocannabinoids; Energy Intake; Ethanolamines; Female; Glycerides; Healthy Volunteers; Humans; Male; Meals; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Retrospective Studies; Reward; Thinness; Young Adult | 2015 |
Exposure to Allergen Causes Changes in NTS Neural Activities after Intratracheal Capsaicin Application, in Endocannabinoid Levels and in the Glia Morphology of NTS.
Allergen exposure may induce changes in the brainstem secondary neurons, with neural sensitization of the nucleus solitary tract (NTS), which in turn can be considered one of the causes of the airway hyperresponsiveness, a characteristic feature of asthma. We evaluated neurofunctional, morphological, and biochemical changes in the NTS of naive or sensitized rats. To evaluate the cell firing activity of NTS, in vivo electrophysiological experiments were performed before and after capsaicin challenge in sensitized or naive rats. Immunohistochemical studies, endocannabinoid, and palmitoylethanolamide quantification in the NTS were also performed. This study provides evidence that allergen sensitization in the NTS induced: (1) increase in the neural firing response to intratracheal capsaicin application, (2) increase of endocannabinoid anandamide and palmitoylethanolamide, a reduction of 2-arachidonoylglycerol levels in the NTS, (3) glial cell activation, and (4) prevention by a Group III metabotropic glutamate receptor activation of neural firing response to intratracheal application of capsaicin in both naïve and sensitized rats. Therefore, normalization of ovalbumin-induced NTS neural sensitization could open up the prospect of new treatments based on the recovery of specific brain nuclei function and for extensive studies on acute or long-term efficacy of selective mGlu ligand, in models of bronchial hyperreactivity. Topics: Allergens; Amides; Animals; Arachidonic Acids; Asthma; Brain Stem; Capsaicin; Endocannabinoids; Ethanolamines; Glycerides; Humans; Neuroglia; Neurons; Palmitic Acids; Polyunsaturated Alkamides; Propionates; Rats; Receptors, Glutamate; Respiratory Hypersensitivity; Solitary Nucleus | 2015 |
Changes in plasma levels of N-arachidonoyl ethanolamine and N-palmitoylethanolamine following bariatric surgery in morbidly obese females with impaired glucose homeostasis.
We examined endocannabinoids (ECs) in relation to bariatric surgery and the association between plasma ECs and markers of insulin resistance.. A study of 20 participants undergoing bariatric surgery. Fasting and 2-hour plasma glucose, lipids, insulin, and C-peptide were recorded preoperatively and 6 months postoperatively with plasma ECs (AEA, 2-AG) and endocannabinoid-related lipids (PEA, OEA).. Gender-specific analysis showed differences in AEA, OEA, and PEA preoperatively with reductions in AEA and PEA in females postoperatively. Preoperatively, AEA was correlated with 2-hour glucose (r = 0.55, P = 0.01), HOMA-IR (r = 0.61, P = 0.009), and HOMA %S (r = -0.71, P = 0.002). OEA was correlated with weight (r = 0.49, P = 0.03), waist circumference (r = 0.52, P = 0.02), fasting insulin (r = 0.49, P = 0.04), and HOMA-IR (r = 0.48, P = 0.05). PEA was correlated with fasting insulin (r = 0.49, P = 0.04). 2-AG had a negative correlation with fasting glucose (r = -0.59, P = 0.04).. Gender differences exist in circulating ECs in obese subjects. Females show changes in AEA and PEA after bariatric surgery. Specific correlations exist between different ECs and markers of obesity and insulin and glucose homeostasis. Topics: Adult; Amides; Arachidonic Acids; Bariatric Surgery; Blood Glucose; Body Mass Index; Endocannabinoids; Ethanolamines; Female; Glucose Tolerance Test; Homeostasis; Humans; Insulin; Insulin Resistance; Male; Middle Aged; Obesity; Obesity, Morbid; Palmitic Acids; Polyunsaturated Alkamides; Postoperative Period; Sex Factors; Time Factors; Waist Circumference | 2015 |
Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies.
Anandamide (AEA) is an endocannabinoid (EC) that modulates multiple functions in the CNS and that is released in areas of injury, exerting putative neuroprotective actions. In the present study, we have used intravital microscopy to analyze the role of the EC system in the glial response against an acute insult. Our data show that AEA modulates astroglial function in vivo by increasing connexin-43 hemichannel (HC) activity. Furthermore, the genetic inactivation of the AEA-degrading enzyme, fatty acid amide hydrolase (FAAH), also increased HC activity and enhanced the microglial response against an acute injury to the brain parenchyma, effects that were mediated by cannabinoid CB1 receptors. The contribution of ATP released through an astrocytic HC was critical for the microglial response, as this was prevented by the use of the HC blocker flufenamic acid and by apyrase. As could be expected, brain concentrations of AEA, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were elevated in FAAH-null mice, while 2-arachidonoylglycerol (2-AG) concentrations remained unaltered. In summary, these findings demonstrate that AEA modifies glial functions by promoting an enhanced pro-inflammatory glial response in the brain. Topics: Adenosine Triphosphate; Amides; Amidohydrolases; Animals; Anti-Inflammatory Agents; Apyrase; Arachidonic Acids; Astrocytes; Brain; Brain Injuries; Connexin 43; Disease Models, Animal; Endocannabinoids; Ethanolamines; Flufenamic Acid; Glycerides; Lasers; Mice; Mice, Knockout; Mice, Transgenic; Microglia; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1 | 2015 |
Inhibition of FAAH confers increased stem cell migration via PPARα.
Regenerative activity in tissues of mesenchymal origin depends on the migratory potential of mesenchymal stem cells (MSCs). The present study focused on inhibitors of the enzyme fatty acid amide hydrolase (FAAH), which catalyzes the degradation of endocannabinoids (anandamide, 2-arachidonoylglycerol) and endocannabinoid-like substances (N-oleoylethanolamine, N-palmitoylethanolamine). Boyden chamber assays, the FAAH inhibitors, URB597 and arachidonoyl serotonin (AA-5HT), were found to increase the migration of human adipose-derived MSCs. LC-MS analyses revealed increased levels of all four aforementioned FAAH substrates in MSCs incubated with either FAAH inhibitor. Following addition to MSCs, all FAAH substrates mimicked the promigratory action of FAAH inhibitors. Promigratory effects of FAAH inhibitors and substrates were causally linked to activation of p42/44 MAPKs, as well as to cytosol-to-nucleus translocation of the transcription factor, PPARα. Whereas PPARα activation by FAAH inhibitors and substrates became reversed upon inhibition of p42/44 MAPK activation, a blockade of PPARα left p42/44 MAPK phosphorylation unaltered. Collectively, these data demonstrate FAAH inhibitors and substrates to cause p42/44 MAPK phosphorylation, which subsequently activates PPARα to confer increased migration of MSCs. This novel pathway may be involved in regenerative effects of endocannabinoids whose degradation could be a target of pharmacological intervention by FAAH inhibitors. Topics: Adipose Tissue; Amides; Amidohydrolases; Arachidonic Acids; Benzamides; Carbamates; Cell Movement; Cells, Cultured; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; Humans; Mesenchymal Stem Cells; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; PPAR alpha; Receptor, Cannabinoid, CB1; Serotonin | 2015 |
Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH) Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture.
The dysregulation of the endocannabinoid system is associated with cardiometabolic complications of obesity. Allelic variants in coding genes for this system components may contribute to differences in the susceptibility to obesity and related health hazards. These data have mostly been shown in Caucasian populations and in severely obese individuals. We investigated a multiethnic Brazilian population to study the relationships among the polymorphism 385C>A in an endocannabinoid degrading enzyme gene (FAAH), endocannabinoid levels and markers of cardiometabolic risk. Fasting plasma levels of endocannabinoids and congeners (anandamide, 2-arachidonoylglycerol, N-oleoylethanolamide and N-palmitoylethanolamide) were measured by liquid chromatography-mass spectrometry in 200 apparently healthy individuals of both genders with body mass indices from 22.5 ± 1.8 to 35.9 ± 5.5 kg/m2 (mean ± 1 SD) and ages between 18 and 60 years. All were evaluated for anthropometric parameters, blood pressure, metabolic variables, homeostatic model assessment of insulin resistance (HOMA-IR), adiponectin, leptin, C-reactive protein, and genotyping. The endocannabinoid levels increased as a function of obesity and insulin resistance. The homozygous genotype AA was associated with higher levels of anandamide and lower levels of adiponectin versus wild homozygous CC and heterozygotes combined. The levels of anandamide were independent and positively associated with the genotype AA position 385 of FAAH, C-reactive protein levels and body mass index. Our findings provide evidence for an endocannabinoid-related phenotype that may be identified by the combination of circulating anandamide levels with genotyping of the FAAH 385C>A; this phenotype is not exclusive to mono-ethnoracial populations nor to individuals with severe obesity. Topics: Adiponectin; Adult; Amides; Amidohydrolases; Anthropometry; Arachidonic Acids; Blood Pressure; Body Mass Index; Brazil; Endocannabinoids; Ethanolamines; Ethnicity; Female; Genotype; Glycerides; Homeostasis; Homozygote; Humans; Insulin Resistance; Male; Middle Aged; Obesity; Oleic Acids; Palmitic Acids; Phenotype; Polymorphism, Genetic; Polyunsaturated Alkamides; Prevalence; Risk Factors | 2015 |
Circulating endocannabinoids in insulin sensitive vs. insulin resistant obese postmenopausal women. A MONET group study.
To measure the circulating levels of endocannabinoids and related molecules at fasting, after acute hyperinsulinemia and after weight loss in insulin sensitive vs. insulin resistant obese postmenopausal women.. The sample consisted of 30 obese postmenopausal women (age: 58.9 ± 5.2 yrs; BMI: 32.9 ± 3.6 kg/m(2) ). Subjects underwent a 3-hour hyperinsulinaemic-euglycaemic clamp (HEC) (glucose disposal rate (M-value): 10.7 ± 3.3 mg min(-1) kg(-1) FFM) and 6-month weight loss intervention. Participants were classified as insulin sensitive obese (ISO) or insulin resistant obese (IRO) based on a predefined cutoff. Plasma levels of the endocannabinoids, anandamide (AEA), 2-arachidonoylglycerol (2-AG), and of the AEA-related compounds, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), were measured by liquid chromatography-mass spectrometry.. IRO presented higher levels of 2-AG (P < 0.05) independently of the HEC and weight loss, whereas the HEC had an independent inhibitory effect on AEA, PEA, and OEA levels (P < 0.05) in both groups. Furthermore, there was an independent stimulatory effect of weight loss only on PEA levels in both groups (P < 0.05).. This study is the first to show that higher circulating levels of the endocannabinoid 2-AG are found in IRO compared to ISO postmenopausal women, and that weight loss is associated with an increase in PEA, a PPAR-α ligand. Topics: Amides; Arachidonic Acids; Body Composition; Body Mass Index; Cholesterol, HDL; Cholesterol, LDL; Cohort Studies; Endocannabinoids; Ethanolamines; Female; Glucose Clamp Technique; Glycerides; Humans; Hyperinsulinism; Insulin; Insulin Resistance; Middle Aged; Obesity; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Postmenopause; Triglycerides; Weight Loss | 2014 |
Plasma anandamide and related n-acylethanolamide levels are not elevated in pregnancies complicated by hyperemesis gravidarum.
Cannabinoids are effective antiemetics and the "endogenous cannabinoids" (endocannabinoids) are thought to modulate emesis in both humans and animal models. Endocannabinoids, their receptors and their metabolising enzymes are present in peripheral blood and a reduction in blood endocannabinoid concentration has been observed in individuals with excessive nausea and vomiting following parabolic flight manoeuvres. We tested the hypothesis that plasma endocannabinoid levels are similarly perturbed in women with hyperemesis gravidarum (HG), a condition where the aetiopathogenesis is still unknown, compared to normal pregnant controls.. Plasma N-arachidonoylethanolamine (anandamide), N-oleoylethanolamide and N-palmitoylethanolamide were quantified in women with HG (n = 15) and matched normal pregnant controls (n = 30) using UHPLC-ESI-MS/MS utilising an isotope dilution method and selective ion monitoring.. No significant differences in anandamide, oleoylethanolamide and palmitoylethanolamide levels were observed between the two groups. There were no significant correlations between these endocannabinoids and plasma haematocrit and serum urea or sodium concentrations.. These results would suggest that either the circulating endocannabinoids quantified may not be key modulating factors in HG or that the expected endocannabinoid system response to the stress induced by nausea and vomiting of early pregnancy remain unchanged in women with HG. Topics: Adult; Amides; Arachidonic Acids; Case-Control Studies; Endocannabinoids; Ethanolamines; Female; Hematocrit; Humans; Hyperemesis Gravidarum; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Pregnancy; Sodium Chloride; Urea; Young Adult | 2014 |
Fatty acid ethanolamide levels are altered in borderline personality and complex posttraumatic stress disorders.
Borderline personality (BPD) and complex posttraumatic stress disorders (PTSD) are both powerfully associated with the experience of interpersonal violence during childhood and adolescence. The disorders frequently co-occur and often result in pervasive problems in, e.g., emotion regulation and altered pain perception, where the endocannabinoid system is deeply involved. We hypothesize an endocannabinoid role in both disorders. We investigated serum levels of the endocannabinoids anandamide and 2-arachidonoylglycerol and related fatty acid ethanolamides (FAEs) in BPD, PTSD, and controls. Significant alterations were found for both endocannabinoids in BPD and for the FAE oleoylethanolamide in PTSD suggesting a respective link to both disorders. Topics: Adult; Amides; Arachidonic Acids; Borderline Personality Disorder; Endocannabinoids; Ethanolamines; Fatty Acids; Female; Glycerides; Humans; Male; Middle Aged; Palmitic Acids; Polyunsaturated Alkamides; Prospective Studies; Psychiatric Status Rating Scales; Severity of Illness Index; Stress Disorders, Post-Traumatic; Young Adult | 2014 |
Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training.
Preclinical investigations have demonstrated that drugs of abuse alter the levels of lipid-based signalling molecules, including endocannabinoids (eCBs) and N-acylethanolamines (NAEs), in the rodent brain. In addition, several drugs targeting eCBs and/or NAEs are implicated in reward and/or seeking behaviours related to the stimulation of dopamine systems in the brain. In our study, the brain levels of eCBs (anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and NAEs (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)) were analyzed via an LC-MS/MS method in selected brain structures of rats during cocaine self-administration and after extinction training according to the "yoked" control procedure. Repeated (14days) cocaine (0.5mg/kg/infusion) self-administration and yoked drug delivery resulted in a significant decrease (ca. 52%) in AEA levels in the cerebellum, whereas levels of 2-AG increased in the frontal cortex, the hippocampus and the cerebellum and decreased in the hippocampus and the dorsal striatum. In addition, we detected increases (>150%) in the levels of OEA and PEA in the limbic areas in both cocaine treated groups, as well as an increase in the tissue levels of OEA in the dorsal striatum in only the yoked cocaine group and increases in the tissue levels of PEA in the dorsal striatum (both cocaine groups) and the nucleus accumbens (yoked cocaine group only). Compared to the yoked saline control group, extinction training (10days) resulted in a potent reduction in AEA levels in the frontal cortex, the hippocampus and the nucleus accumbens and in 2-AG levels in the hippocampus, the dorsal striatum and the cerebellum. The decreases in the limbic and subcortical areas were more apparent for rats that self-administered cocaine. Following extinction, there was a region-specific change in the levels of NAEs in rats previously injected with cocaine; a potent increase (ca. 100%) in the levels of OEA and PEA was detected in the prefrontal cortex and the hippocampus, whilst a drop was noted in the striatal areas versus yoked saline yoked animals. Our findings support the previous pharmacological evidence that the eCB system and NAEs are involved in reinforcement and extinction of positively reinforced behaviours and that these lipid-derived molecules may represent promising targets for the development of new treatments for drug addiction. Topics: Amides; Animals; Arachidonic Acids; Brain; Cocaine; Conditioning, Operant; Endocannabinoids; Ethanolamines; Extinction, Psychological; Glycerides; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Reinforcement, Psychology; Self Administration | 2014 |
Antidepressants and changes in concentration of endocannabinoids and N-acylethanolamines in rat brain structures.
The endocannabinoid (eCB) system has recently been implicated in both the pathogenesis of depression and the action of antidepressants. Here, we investigated the effect of acutely or chronically administering antidepressants [imipramine (IMI) (15 mg/kg), escitalopram (ESC) (10 mg/kg), and tianeptine (10 mg/kg)] on the levels of both eCBs [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)] and N-acylethanolamines (NAEs) [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)] in various rat brain regions. We also examined the ability of the acute and chronic administration of N-acetylcysteine (NAC) (a mucolytic drug; 100 mg/kg) or URB597 (a fatty acid amide hydrolase inhibitor; 0.3 mg/kg), which have both elicited antidepressant activity in preclinical studies, to affect eCB and NAE levels. Next, we determined whether the observed effects are stable 10 days after the chronic administration of these drugs was halted. We report that the chronic administration of all investigated drugs increased AEA levels in the hippocampus and also increased both AEA and 2-AG levels in the dorsal striatum. NAE levels in limbic regions also increased after treatment with IMI (PEA/OEA), ESC (PEA), and NAC (PEA/OEA). Removing chronic ESC treatment for 10 days affected eCB and NAE levels in the frontal cortex, hippocampus, dorsal striatum, and cerebellum, while a similar tianeptine-free period enhanced accumbal NAE levels. All other drugs maintained their effects after the 10-day washout period. Therefore, the eCB system appears to play a significant role in the mechanism of action of clinically effective and potential antidepressants and may serve as a target for drug design and discovery. Topics: Acetylcysteine; Amides; Amidohydrolases; Animals; Antidepressive Agents; Arachidonic Acids; Benzamides; Brain; Carbamates; Citalopram; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Expectorants; Glycerides; Imipramine; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats, Wistar; Thiazepines | 2014 |
Simultaneous ultra-high performance liquid chromathograpy-electrospray ionization-quadrupole-time of flight mass spectrometry quantification of endogenous anandamide and related N-acylethanolamides in bio-matrices.
We describe and validate a sensitive UHPLC-ESI-QTOF-MS method for the simultaneous quantification of seven endocannabinoids and non-endocannabinoids related N-acylethanolamides: N-arachidonoylethanolamide, N-palmitoylethanolamide, N-stearoylethanolamide, N-oleoylethanolamide, N-linoleoylethanolamide, N-α-linolenoylethanolamide and N-eicosapentaenoylethanolamide in several bio-matrices for the purpose of research and clinical application. We examined effects of different liquid-liquid and solid phase extraction on the recovery of endocannabinoids and N-acylethanolamides. Protein precipitation with cooled acetone and extraction with acetonitrile (1% v/v formic acid) using OASIS HLB cartridge gave better results. Separation was performed on a Waters Acquity UPLC HSST3 column using a 9min elution gradient coupled with high resolution mass spectrometry (QTOF/MS). The high sensitivity of the developed method allow its application on sample with low volumes or low levels of endocannabinoids and N-acylethanolamides and make the method suitable for routine measurement in human bio-matrices, such as plasma, serum (500μL), urine (1mL) and tissues (10-30mg). Its application in clinical research could contribute to unravel pathophysiological roles of these family of lipid mediators and disclose novel diagnostic and prognostic markers. Topics: Amides; Animals; Arachidonic Acids; Chromatography, High Pressure Liquid; Endocannabinoids; Ethanolamines; Humans; Limit of Detection; Linoleic Acids; Male; Palmitic Acids; Polyunsaturated Alkamides; Rats; Spectrometry, Mass, Electrospray Ionization; Stearic Acids; Tandem Mass Spectrometry | 2014 |
Relationship between seminal plasma levels of anandamide congeners palmitoylethanolamide and oleoylethanolamide and semen quality.
To determine whether changes in seminal plasma concentrations of the endogenous lipid signaling molecules palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) have significant effects on sperm quality.. Biochemical and physiological studies of human seminal plasma and spermatozoa.. Academic tertiary care medical center.. Ninety men attending an infertility clinic for semen analysis.. Palmitoylethanolamide and OEA extracted from seminal plasma were quantified by ultra high-performance liquid chromatography (HPLC)-tandem mass spectrometry. Patient sperm from semen with normal parameters were exposed in vitro to PEA or OEA to determine effects on sperm motility, viability, and mitochondrial activity.. The relationship between seminal plasma concentrations of PEA and OEA and sperm quality and the effect of these compounds on sperm motility, viability, and mitochondria activity in vitro.. Palmitoylethanolamide and OEA concentrations in seminal plasma were lower in men with asthenozoospermia and oligoasthenoteratozospermia compared with men with normal semen parameters. Palmitoylethanolamide and OEA rapidly and significantly improved sperm motility and maintained viability without affecting mitochondria activity in vitro.. Maintenance of normal PEA and OEA tone in human seminal plasma may be necessary for the preservation of normal sperm function and male fertility. Exocannabinoids found in Cannabis, such as delta-9-tetrahydrocannabinol and cannabidiol, could compete with these endocannabinoids upsetting their finely balanced, normal functioning and resulting in male reproductive failure. Topics: Adult; Amides; Arachidonic Acids; Asthenozoospermia; Endocannabinoids; Ethanolamines; Humans; Male; Membrane Potential, Mitochondrial; Middle Aged; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Reproducibility of Results; Semen; Semen Analysis; Sensitivity and Specificity; Spermatozoa; Statistics as Topic; Young Adult | 2014 |
JZL184 is anti-hyperalgesic in a murine model of cisplatin-induced peripheral neuropathy.
Cisplatin has been used effectively to treat a variety of cancers but its use is limited by the development of painful peripheral neuropathy. Because the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) is anti-hyperalgesic in several preclinical models of chronic pain, the anti-hyperalgesic effect of JZL184, an inhibitor of 2-AG hydrolysis, was tested in a murine model of cisplatin-induced hyperalgesia. Systemic injection of cisplatin (1mg/kg) produced mechanical hyperalgesia when administered daily for 7 days. Daily peripheral administration of a low dose of JZL184 in conjunction with cisplatin blocked the expression of mechanical hyperalgesia. Acute injection of a cannabinoid (CB)-1 but not a CB2 receptor antagonist reversed the anti-hyperalgesic effect of JZL184 indicating that downstream activation of CB1 receptors suppressed the expression of mechanical hyperalgesia. Components of endocannabinoid signaling in plantar hind paw skin and lumbar dorsal root ganglia (DRGs) were altered by treatments with cisplatin and JZL184. Treatment with cisplatin alone reduced levels of 2-AG and AEA in skin and DRGs as well as CB2 receptor protein in skin. Combining treatment of JZL184 with cisplatin increased 2-AG in DRGs compared to cisplatin alone but had no effect on the amount of 2-AG in skin. Evidence that JZL184 decreased the uptake of [(3)H]AEA into primary cultures of DRGs at a concentration that also inhibited the enzyme fatty acid amide hydrolase, in conjunction with data that 2-AG mimicked the effect of JZL184 on [(3)H]AEA uptake support the conclusion that AEA most likely mediates the anti-hyperalgesic effect of JZL184 in this model. Topics: Amides; Analgesics; Animals; Antineoplastic Agents; Arachidonic Acids; Benzodioxoles; Cells, Cultured; Cisplatin; Disease Models, Animal; Endocannabinoids; Ethanolamines; Ganglia, Spinal; Glycerides; Hyperalgesia; Indoles; Male; Mesencephalon; Mice; Mice, Inbred C3H; Monoacylglycerol Lipases; Morpholines; Neuralgia; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Skin; Spinal Cord | 2014 |
Full inhibition of spinal FAAH leads to TRPV1-mediated analgesic effects in neuropathic rats and possible lipoxygenase-mediated remodeling of anandamide metabolism.
Neuropathic pain elevates spinal anandamide (AEA) levels in a way further increased when URB597, an inhibitor of AEA hydrolysis by fatty acid amide hydrolase (FAAH), is injected intrathecally. Spinal AEA reduces neuropathic pain by acting at both cannabinoid CB1 receptors and transient receptor potential vanilloid-1 (TRPV1) channels. Yet, intrathecal URB597 is only partially effective at counteracting neuropathic pain. We investigated the effect of high doses of intrathecal URB597 on allodynia and hyperalgesia in rats with chronic constriction injury (CCI) of the sciatic nerve. Among those tested, the 200 µg/rat dose of URB597 was the only one that elevated the levels of the FAAH non-endocannabinoid and anti-inflammatory substrates, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and of the endocannabinoid FAAH substrate, 2-arachidonoylglycerol, and fully inhibited thermal and tactile nociception, although in a manner blocked almost uniquely by TRPV1 antagonism. Surprisingly, this dose of URB597 decreased spinal AEA levels. RT-qPCR and western blot analyses demonstrated altered spinal expression of lipoxygenases (LOX), and baicalein, an inhibitor of 12/15-LOX, significantly reduced URB597 analgesic effects, suggesting the occurrence of alternative pathways of AEA metabolism. Using immunofluorescence techniques, FAAH, 15-LOX and TRPV1 were found to co-localize in dorsal spinal horn neurons of CCI rats. Finally, 15-hydroxy-AEA, a 15-LOX derivative of AEA, potently and efficaciously activated the rat recombinant TRPV1 channel. We suggest that intrathecally injected URB597 at full analgesic efficacy unmasks a secondary route of AEA metabolism via 15-LOX with possible formation of 15-hydroxy-AEA, which, together with OEA and PEA, may contribute at producing TRPV1-mediated analgesia in CCI rats. Topics: Amides; Amidohydrolases; Analgesia; Animals; Arachidonate 15-Lipoxygenase; Arachidonic Acids; Benzamides; Calcium Signaling; Carbamates; Diterpenes; Endocannabinoids; Ethanolamines; Flavanones; Glycerides; HEK293 Cells; Humans; Hyperalgesia; Injections, Spinal; Lipoxygenase Inhibitors; Male; Neuralgia; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Posterior Horn Cells; Rats; Rats, Wistar; Sciatic Nerve; Spinal Cord; TRPV Cation Channels | 2013 |
Platelet-rich plasma exerts antinociceptive activity by a peripheral endocannabinoid-related mechanism.
In regenerative medicine, platelet by-products containing factors physiologically involved in wound healing, have been successfully used in the form of platelet-rich plasma (PRP) for the topical therapy of various clinical conditions since it produces an improvement in tissue repair as well as analgesic effects. Measurement of endocannabinoids and related compounds in PRP revealed the presence of a significant amount of anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleoylethanolamide. Investigation of the activity of PRP on the keratinocyte cell line NCTC2544 in physiological and inflammatory conditions showed that, under inflammatory conditions, PRP induced in a statistically significant manner the production of these compounds by the cells suggesting that PRP might induce the production of these analgesic mediators particularly in the physiologically inflamed wounded tissue. Studies in a mouse model of acute inflammatory pain induced by formalin injection demonstrated a potent antinociceptive effect against both early and late nocifensive responses. This effect was observed following intrapaw injection of (1) total PRP; (2) lipids extracted from PRP; and (3) an endocannabinoid-enriched lipid fraction of PRP. In all conditions, antagonists of endocannabinoid CB1 and CB2 receptors, injected in the paw, abrogated the antinociceptive effects strongly suggesting for this preparation a peripheral mechanism of action. In conclusion, we showed that PRP and PRP lipid extract exert a potent antinociceptive activity linked, at least in part, to their endocannabinoids and related compound content, and to their capability of elevating the levels of these lipid mediators in cells. Topics: Amides; Analgesics; Animals; Arachidonic Acids; Blotting, Western; Cell Line, Tumor; Endocannabinoids; Ethanolamines; Glycerides; Humans; Inflammation; Keratinocytes; Mice; Oleic Acids; Pain; Palmitic Acids; Platelet-Rich Plasma; Polyunsaturated Alkamides | 2013 |
Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study.
Endocannabinoids and their attending cannabinoid type 1 (CB1) receptor have been implicated in animal models of post-traumatic stress disorder (PTSD). However, their specific role has not been studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission tomography (PET) and the CB1-selective radioligand [(11)C]OMAR in individuals with PTSD, and healthy controls with lifetime histories of trauma (trauma-exposed controls (TC)) and those without such histories (healthy controls (HC)). Untreated individuals with PTSD (N=25) with non-combat trauma histories, and TC (N=12) and HC (N=23) participated in a magnetic resonance imaging scan and a resting PET scan with the CB1 receptor antagonist radiotracer [(11)C]OMAR, which measures the volume of distribution (VT) linearly related to CB1 receptor availability. Peripheral levels of anandamide, 2-arachidonoylglycerol, oleoylethanolamide, palmitoylethanolamide and cortisol were also assessed. In the PTSD group, relative to the HC and TC groups, we found elevated brain-wide [(11)C]OMAR VT values (F(2,53)=7.96, P=0.001; 19.5% and 14.5% higher, respectively), which were most pronounced in women (F(1,53)=5.52, P=0.023). Anandamide concentrations were reduced in the PTSD relative to the TC (53.1% lower) and HC (58.2% lower) groups. Cortisol levels were lower in the PTSD and TC groups relative to the HC group. Three biomarkers examined collectively--OMAR VT, anandamide and cortisol--correctly classified nearly 85% of PTSD cases. These results suggest that abnormal CB1 receptor-mediated anandamide signaling is implicated in the etiology of PTSD, and provide a promising neurobiological model to develop novel, evidence-based pharmacotherapies for this disorder. Topics: Adult; Amides; Analysis of Variance; Arachidonic Acids; Brain; Endocannabinoids; Ethanolamines; Female; Glycerides; Humans; Hydrocortisone; Imidazoles; Logistic Models; Male; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Radionuclide Imaging; Receptor, Cannabinoid, CB1; Stress Disorders, Post-Traumatic; Young Adult | 2013 |
Analysis of the "endocannabinoidome" in peripheral tissues of obese Zucker rats.
The endocannabinoid system (ECS) represents one of the major determinants of metabolic disorders. We investigated potential changes in the endogenous levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) in some peripheral organs and tissues of obese Zucker(fa/fa) and lean Zucker(fa/+) rats by qPCR, liquid chromatography mass spectrometry, western blot and enzymatic activity assays. At 10-12 weeks of age AEA levels were significantly lower in BAT, small intestine and heart and higher in soleus of Zucker(fa/fa) rats. In this tissue, also the expression of CB1 receptors was higher. By contrast in Zucker(fa/fa) rats, 2-AG levels were changed (and lower) solely in the small and large intestine. Finally, in Zucker(fa/fa), PEA levels were unchanged, whereas OEA was slightly lower in BAT, and higher in the large intestine. Interestingly, these differences were accompanied by differential alterations of the genes regulating ECS tone. In conclusion, the levels of endocannabinoids are altered during obesity in a way partly correlating with changes of the genes related to their metabolism and activity. Topics: Amides; Animals; Arachidonic Acids; Blotting, Western; Chromatography, Liquid; Endocannabinoids; Ethanolamines; Glycerides; Male; Obesity; Oleic Acids; Palmitic Acids; Polymerase Chain Reaction; Polyunsaturated Alkamides; Rats; Rats, Zucker | 2013 |
Palmitoylethanolamide: from endogenous cannabimimetic substance to innovative medicine for the treatment of cannabis dependence.
Palmitoylethanolamide (PEA) is a fatty acid amide showing some pharmacodynamic similarities with Δ9-tetrahydrocannabinol, the principal psychoactive compound present in the cannabis plant. Like Δ9-tetrahydrocannabinol, PEA can produce a direct or indirect activation of cannabinoid receptors. Furthermore, it acts as an agonist at TRPV1 receptor. The hypothesis is that PEA has anti-craving effects in cannabis dependent patients, is efficacious in the treatment of withdrawal symptoms, produces a reduction of cannabis consumption and is effective in the prevention of cannabis induced neurotoxicity and neuro-psychiatric disorders. Topics: Amides; Arachidonic Acids; Dronabinol; Endocannabinoids; Ethanolamines; Humans; Marijuana Abuse; Models, Biological; Molecular Structure; Palmitic Acids; Polyunsaturated Alkamides; Substance Withdrawal Syndrome; TRPV Cation Channels | 2013 |
Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks.
Endocannabinoid (eCB) signaling has been identified as a modulator of adaptation to stress, and is integral to basal and stress-induced glucocorticoid regulation. Furthermore, interactions between eCBs and glucocorticoids have been shown to be necessary for the regulation of emotional memories, suggesting that eCB function may relate to the development of post-traumatic stress disorder (PTSD). To examine this, plasma eCBs were measured in a sample (n=46) drawn from a population-based cohort selected for physical proximity to the World Trade Center (WTC) at the time of the 9/11 attacks. Participants received a structured diagnostic interview and were grouped according to whether they met diagnostic criteria for PTSD (no PTSD, n=22; lifetime diagnosis of PTSD=24). eCB content (2-arachidonoylglycerol (2-AG) and anandamide (AEA)) and cortisol were measured from 8 a.m. plasma samples. Circulating 2-AG content was significantly reduced among individuals meeting diagnostic criteria for PTSD. The effect of reduced 2-AG content in PTSD remained significant after controlling for the stress of exposure to the WTC collapse, gender, depression and alcohol abuse. There were no significant group differences for AEA or cortisol levels; however, across the whole sample AEA levels positively correlated with circulating cortisol, and AEA levels exhibited a negative relationship with the degree of intrusive symptoms within the PTSD sample. This report shows that PTSD is associated with a reduction in circulating levels of the eCB 2-AG. Given the role of 2-AG in the regulation of the stress response, these data support the hypothesis that deficient eCB signaling may be a component of the glucocorticoid dysregulation associated with PTSD. The negative association between AEA levels and intrusive symptoms is consistent with animal data indicating that reductions in AEA promote retention of aversive emotional memories. Future work will aim to replicate these findings and extend their relevance to clinical pathophysiology, as well as to neuroendocrine and molecular markers of PTSD. Topics: Aged; Alcoholism; Amides; Arachidonic Acids; Endocannabinoids; Ethanolamines; Ethnicity; Female; Glycerides; Humans; Hydrocortisone; Male; Middle Aged; Neuropsychological Tests; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Psychiatric Status Rating Scales; Sex Characteristics; Stress Disorders, Post-Traumatic; Terrorism | 2013 |
Probable involvement of Ca(2+)-activated Cl(-) channels (CaCCs) in the activation of CB1 cannabinoid receptors.
Recently, we demonstrated that peripheral antinociception induced by δ opioid receptor is dependent of Ca(2+)-activated Cl(-) channels (CaCCs). Because opioid and cannabinoid receptors share some common mechanisms of action, our objective was to identify a possible relationship between CaCCs and the endocannabinoid system.. To induce hyperalgesia, rat paws were treated with intraplantar prostaglandin E2 (PGE2, 2μg). Nociceptive thresholds to pressure (grams) were measured using an algesimetric apparatus 3h following injection. Probabilities were calculated using ANOVA/Bonferroni's test, and values that were less than 5% were considered to be statistically significant.. Administration of the cannabinoid agonist CB1 anandamide (12.5, 25 and 50μg/paw) and the cannabinoid agonist CB2 PEA (5, 10 and 20μg/paw) decreased the PGE2-induced hyperalgesia in a dose-dependent manner. The possibility of the higher doses of anandamide (50μg) and PEA (20μg) having a central or systemic effect was excluded because the administration of the drug into the contralateral paw did not elicit antinociception in the right paw. As expected, the antinociceptive effects induced by anandamide and PEA were blocked by the CB1 and CB2 receptor antagonists AM251 and AM630, respectively. The peripheral antinociception was induced by anandamide but not PEA and was dose-dependently inhibited by the CaCC blocker niflumic acid (8, 16 and 32μg).. These results provide the first evidence for the involvement of CaCCs in the peripheral antinociception induced by activation of the CB1 cannabinoid receptor. Topics: Amides; Analysis of Variance; Animals; Arachidonic Acids; Calcium Channel Blockers; Cannabinoid Receptor Agonists; Chloride Channels; Dinoprostone; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamines; Hyperalgesia; Indoles; Male; Niflumic Acid; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2013 |
Antiepileptic action of N-palmitoylethanolamine through CB1 and PPAR-α receptor activation in a genetic model of absence epilepsy.
N-palmitoylethanolamine (PEA), an endogenous fatty acid ethanolamide, plays a key role in the regulation of the inflammatory response and pain through, among others, activation of nuclear peroxisome proliferator-activated receptors (PPAR-α). Endogenous cannabinoids play a protective role in several central nervous system (CNS) disorders, particularly those associated with neuronal hyperexcitability. We investigated the effects of PEA and the role of PPAR-α in absence epilepsy using the WAG/Rij rat model. PEA, anandamide (AEA), a PPAR-α antagonist (GW6471) and a synthetic CB1 receptor antagonist/inverse agonist (SR141716) were administered to WAG/Rij rats in order to evaluate the effects on epileptic spike-wave discharges (SWDs) on EEG recordings. We studied also the effects of PEA co-administration with SR141716 and GW6471 and compared these effects with those of AEA to evaluate PEA mechanism of action and focusing on CB1 receptors and PPAR-α. Both PEA and AEA administration significantly decreased SWDs parameters (absence seizures). In contrast, GW6471 was devoid of effects while SR141716 had pro-absence effects. The co-administration of SR141716 with PEA or AEA completely blocked the anti-absence effects of these compounds. GW6471 antagonized PEA's effects whereas it did not modify AEA's effects. Furthermore, we have also measured PEA, AEA and 2-AG (2-arachidonoylglycerol) brain levels identifying significant differences between epileptic and control rats such as decreased PEA levels in both thalamus and cortex that might contribute to absence epilepsy. Our data demonstrate that PEA has anti-absence properties in the WAG/Rij rat model and that such properties depend on PPAR-α and indirect activation of CB1 receptors. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'. Topics: Amides; Animals; Anticonvulsants; Arachidonic Acids; Calcium Channel Blockers; Cannabinoid Receptor Antagonists; Dose-Response Relationship, Drug; Electroencephalography; Endocannabinoids; Epilepsy, Absence; Ethanolamines; Glycerides; Injections, Intraventricular; Lipid Metabolism; Male; Oxazoles; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; PPAR alpha; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Rimonabant; Tyrosine | 2013 |
Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice.
Endocannabinoid levels are elevated in human and mouse atherosclerosis, but their causal role is not well understood. Therefore, we studied the involvement of fatty acid amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in atherosclerotic plaque vulnerability.. We assessed atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) and ApoE(-/-)FAAH(-/-) mice. Before and after 5, 10, and 15 weeks on high-cholesterol diet, we analyzed weight, serum cholesterol, and endocannabinoid levels, and atherosclerotic lesions in thoracoabdominal aortas and aortic sinuses. Serum levels of FAAH substrates anandamide, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were 1.4- to 2-fold higher in case of FAAH deficiency. ApoE(-/-)FAAH(-/-) mice had smaller plaques with significantly lower content of smooth muscle cells, increased matrix metalloproteinase-9 expression, and neutrophil content. Circulating and bone marrow neutrophil counts were comparable between both genotypes, whereas CXC ligand1 levels were locally elevated in aortas of FAAH-deficient mice. We observed enhanced recruitment of neutrophils, but not monocytes, to large arteries of ApoE(-/-) mice treated with FAAH inhibitor URB597. Spleens of ApoE(-/-)FAAH(-/-) mice had reduced CD4+FoxP3+regulatory T-cell content, and in vitro stimulation of splenocytes revealed significantly elevated interferon-γ and tumor necrosis factor-α production in case of FAAH deficiency.. Increased anandamide and related FAAH substrate levels are associated with the development of smaller atherosclerotic plaques with high neutrophil content, accompanied by an increased proinflammatory immune response. Topics: Amides; Amidohydrolases; Animals; Aorta; Aortic Diseases; Apolipoproteins E; Arachidonic Acids; Atherosclerosis; Benzamides; Carbamates; Cells, Cultured; Chemokine CXCL1; Cholesterol; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Genotype; Inflammation Mediators; Interferon-gamma; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Smooth, Vascular; Neutrophil Infiltration; Neutrophils; Oleic Acids; Palmitic Acids; Phenotype; Plaque, Atherosclerotic; Polyunsaturated Alkamides; Spleen; T-Lymphocytes, Regulatory; Time Factors; Tumor Necrosis Factor-alpha | 2013 |
CB1 and CB2 cannabinoid receptor agonists induce peripheral antinociception by activation of the endogenous noradrenergic system.
Cannabinoid agonists induce norepinephrine release in central, spinal, and peripheral sites. Previous studies suggest an interaction between the cannabinoid and adrenergic systems on antinociception. In this study, we sought to verify whether the CB1 and CB2 cannabinoid receptor agonists anandamide and N-palmitoyl-ethanolamine (PEA), respectively, are able to induce peripheral antinociception via an adrenergic mechanism.. All drugs were administered locally into the right hindpaw of male Wistar rats. The rat paw pressure test was used, with hyperalgesia induced by intraplantar injection of prostaglandin E2 (2 μg).. Anandamide, 12.5 ng/paw, 25 ng/paw, and 50 ng/paw elicited a local peripheral antinociceptive effect that was antagonized by CB1 cannabinoid receptor antagonist AM251, 20 µg/paw, 40 µg/paw, and 80 µg/paw, but not by CB2 cannabinoid receptor antagonist AM630, 100 µg/paw. PEA, 5 µg/paw, 10 µg/paw, and 20 µg/paw, elicited a local peripheral antinociceptive effect that was antagonized by AM630, 25 µg/paw, 50 µg/paw, and 100 µg/paw, but not by AM251, 80 µg/paw. Antinociception induced by anandamide or PEA was antagonized by the nonselective α2 adrenoceptor antagonist yohimbine, 05 µg/paw, 10 µg/paw, and 20 µg/paw, and by the selective α2C adrenoceptor antagonist rauwolscine, 10 µg/paw, 15 µg/paw, and 20 µg/paw, but not by the selective antagonists for α2A, α2B, and α2D adrenoceptor subtypes, 20 μg/paw. The antinociceptive effect of the cannabinoids was also antagonized by the nonselective α1 adrenoceptor antagonist prazosin, 0.5 µg/paw, 1 µg/paw, and 2 µg/paw, and by the nonselective β adrenoceptor antagonist propranolol, 150 ng/paw, 300 ng/paw, and 600 ng/paw. Guanethidine, which depletes peripheral sympathomimetic amines (30 mg/kg/animal, once a day for 3 days), restored approximately 70% the anandamide-induced and PEA-induced peripheral antinociception. Furthermore, acute injection of the norepinephrine reuptake inhibitor reboxetine, 30 µg/paw, intensified the antinociceptive effects of low-dose anandamide, 12.5 ng/paw, and PEA, 5 µg/paw.. This study provides evidence that anandamide and PEA induce peripheral antinociception activating CB1 and CB2 cannabinoid receptors, respectively, stimulating an endogenous norepinephrine release that activates peripheral adrenoceptors inducing antinociception. Topics: Adrenergic alpha-1 Receptor Antagonists; Adrenergic alpha-2 Receptor Antagonists; Adrenergic beta-Antagonists; Adrenergic Uptake Inhibitors; Amides; Analgesics; Animals; Arachidonic Acids; Cannabinoid Receptor Agonists; Dinoprostone; Endocannabinoids; Ethanolamines; Male; Morpholines; Norepinephrine; Pain Measurement; Palmitic Acids; Peripheral Nerves; Polyunsaturated Alkamides; Prazosin; Propranolol; Rats; Rats, Wistar; Reboxetine; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Sympathetic Nervous System; Yohimbine | 2013 |
Elevated anandamide and related N-acylethanolamine levels occur in the peripheral blood of women with ectopic pregnancy and are mirrored by changes in peripheral fatty acid amide hydrolase activity.
Studies from knockout mice suggest that perturbations in oviductal endocannabinoid levels, endocannabinoid receptors, or endocannabinoid degrading enzyme [fatty acid amide hydrolase (FAAH)] expression result in infertility secondary to physical trapping of embryos. Similar observations have been made in ectopic pregnant women together with a suggestion that the endocannabinoid receptor gene polymorphism 1359G/A (rs1049353) is associated with ectopic pregnancy. These observations led to the hypothesis that ectopic pregnancy is associated with a perturbation in levels of endocannabinoids and FAAH activity and that such changes are associated with impaired tubal function.. The objective of the study was to quantify the plasma levels of endocannabinoids (anandamide, oleoylethanolamide, and palmitoylethanolamide) and evaluate blood endocannabinoid metabolizing enzyme activities FAAH and N-acyl-phosphatidyl-ethanolamine phospholipase D (NAPE-PLD) in ectopic pregnancy and normal pregnant controls and relate that to β-human chorionic gonadotropin (β-hCG) levels. Additionally, we wanted to examine the effect of endocannabinoids on cilia beat frequency in Fallopian tube epithelial cells ex vivo.. Whole blood collected from ectopic and normal pregnancies was used for quantification of plasma endocannabinoid levels by ultra-HPLC-tandem mass spectrometry of FAAH and NAPE-PLD enzyme activities by radiometric assays, and β-hCG by immunoassay. Fallopian tube epithelial cells from healthy volunteers were treated with endocannabinoids and cilia beat frequency analyzed using a high-speed digital camera and CiliaFA software.. FAAH activity (P < .05) but not NAPE-PLD activity was significantly reduced in ectopic pregnancies. All 3 endocannabinoids levels were significantly higher (P < .05) in ectopic pregnancy. There was no correlation between endocannabinoids, enzyme activity, and β-hCG levels. Oleoylethanolamide (P < .05), but not methanandamide or palmitoylethanolamide, significantly decreased cilia beat frequency in Fallopian tube epithelial cells.. Elevated endocannabinoid levels and reduced FAAH activity are associated with ectopic pregnancy and may modulate tubal function, suggesting dysfunctional endocannabinoid action in ectopic implantation. Oleoylethanolamide may play a critical role in embryo-tubal transport. Topics: Adult; Amides; Amidohydrolases; Arachidonic Acids; Cells, Cultured; Chorionic Gonadotropin, beta Subunit, Human; Cilia; Embryo Implantation; Endocannabinoids; Ethanolamines; Fallopian Tubes; Female; Humans; Luteal Phase; Oleic Acids; Palmitic Acids; Phospholipase D; Polyunsaturated Alkamides; Pregnancy; Pregnancy, Ectopic; Young Adult | 2013 |
Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression.
The endocannabinoid system is known to have positive effects on depression partly through its actions on neurotrophins, such as Brain-Derived Neurotrophic Factor (BDNF). As BDNF is also considered the major candidate molecule for exercise-induced brain plasticity, we hypothesized that the endocannabinoid system represents a crucial signaling system mediating the beneficial antidepressant effects of exercise. Here we investigated, in 11 healthy trained male cyclists, the effects of an intense exercise (60 min at 55% followed by 30 min at 75% W(max)) on plasma levels of endocannabinoids (anandamide, AEA and 2-arachidonoylglycerol, 2-AG) and their possible link with serum BDNF. AEA levels increased during exercise and the 15 min recovery (P<0.001), whereas 2-AG concentrations remained stable. BDNF levels increased significantly during exercise and then decreased during the 15 min of recovery (P<0.01). Noteworthy, AEA and BDNF concentrations were positively correlated at the end of exercise and after the 15 min recovery (r>0.66, P<0.05), suggesting that AEA increment during exercise might be one of the factors involved in exercise-induced increase in peripheral BDNF levels and that AEA high levels during recovery might delay the return of BDNF to basal levels. AEA production during exercise might be triggered by cortisol since we found positive correlations between these two compounds and because corticosteroids are known to stimulate endocannabinoid biosynthesis. These findings provide evidence in humans that acute exercise represents a physiological stressor able to increase peripheral levels of AEA and that BDNF might be a mechanism by which AEA influences the neuroplastic and antidepressant effects of exercise. Topics: Adult; Amides; Arachidonic Acids; beta-Endorphin; Bicycling; Brain-Derived Neurotrophic Factor; Cannabinoid Receptor Modulators; Chromatography, High Pressure Liquid; Depression; Endocannabinoids; Ethanolamines; Exercise; Glycerides; Hematocrit; Humans; Male; Mass Spectrometry; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; PPAR alpha; Reward; Young Adult | 2012 |
Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice.
Cannabichromene (CBC) is a major non-psychotropic phytocannabinoid that inhibits endocannabinoid inactivation and activates the transient receptor potential ankyrin-1 (TRPA1). Both endocannabinoids and TRPA1 may modulate gastrointestinal motility. Here, we investigated the effect of CBC on mouse intestinal motility in physiological and pathological states.. Inflammation was induced in the mouse small intestine by croton oil. Endocannabinoid (anandamide and 2-arachidonoyl glycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry; TRPA1 and cannabinoid receptors were analysed by quantitative RT-PCR; upper gastrointestinal transit, colonic propulsion and whole gut transit were evaluated in vivo; contractility was evaluated in vitro by stimulating the isolated ileum, in an organ bath, with ACh or electrical field stimulation (EFS).. Croton oil administration was associated with decreased levels of anandamide (but not 2-arachidonoyl glycerol) and palmitoylethanolamide, up-regulation of TRPA1 and CB₁ receptors and down-regulation of CB₂ receptors. Ex vivo CBC did not change endocannabinoid levels, but it altered the mRNA expression of TRPA1 and cannabinoid receptors. In vivo, CBC did not affect motility in control mice, but normalized croton oil-induced hypermotility. In vitro, CBC reduced preferentially EFS- versus ACh-induced contractions. Both in vitro and in vivo, the inhibitory effect of CBC was not modified by cannabinoid or TRPA1 receptor antagonists.. CBC selectively reduces inflammation-induced hypermotility in vivo in a manner that is not dependent on cannabinoid receptors or TRPA1. Topics: Amides; Animals; Arachidonic Acids; Cannabinoids; Cannabis; Duodenum; Endocannabinoids; Ethanolamines; Gastrointestinal Agents; Gastrointestinal Motility; Gene Expression Regulation; Ileitis; Ileum; In Vitro Techniques; Jejunum; Male; Mice; Mice, Inbred ICR; Muscle Contraction; Palmitic Acids; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; RNA, Messenger; Transient Receptor Potential Channels; TRPA1 Cation Channel | 2012 |
Involvement of the peroxisome proliferator-activated receptor (PPAR) alpha in vascular response of endocannabinoids in the bovine ophthalmic artery.
Endocannabinoids regulate vascular tone in a variety of vascular tissues. This study aimed to investigate the role of peroxisome proliferators-activated receptors (PPARs) in anandamide- and palmitoylethanolamide-induced relaxant responses on the bovine ophthalmic artery and to evaluate the mechanisms involved. The effects of anandamide and palmitoylethanolamide were examined under myographic conditions on arterial rings pharmacologically pre-contracted with 5-HT. Anandamide and palmitoylethanolamide relaxed the ophthalmic artery rings in time- and concentration-dependent manner stimulating the PPAR alpha (PPARα). The vasorelaxation to endocannabinoids was inhibited by PPARα antagonist GW6471 (1μM), but not the PPAR gamma (PPARγ) antagonist GW9662 (1 μM). Anandamide-induced relaxation was attenuate during the first 60 min by AM251, a selective antagonist of cannabinoid CB(1) receptors, and Pertussis toxin, an inhibitor of G(i/o) protein; by the contrast, the palmitoylethanolamide-induced vasorelaxation was unaffected by cannabinoid antagonists and Pertussis toxin. Endothelium removal decreases slightly the potency and efficacy to endocannabinoids. The relaxant effect to anandamide and palmitoylethanolamide was inhibited by L-NMMA (300 μM), an inhibitor of nitric oxide synthase, and iberiotoxin (200 nM), a selective blocker of large conductance Ca²⁺-activated K⁺ (BK(Ca)). These data support the view that anandamide and palmitoylethanolamide relax the ophthalmic artery in a time-dependent manner via the transcription factors PPARα suggesting a function for them in the physiological mechanisms of vascular regulation. Topics: Amides; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Cattle; Endocannabinoids; Endothelium, Vascular; Enzyme Inhibitors; Ethanolamines; GTP-Binding Protein alpha Subunits, Gi-Go; In Vitro Techniques; Large-Conductance Calcium-Activated Potassium Channels; Myography; Nitric Oxide Synthase; Ophthalmic Artery; Osmolar Concentration; Palmitic Acids; Polyunsaturated Alkamides; PPAR alpha; PPAR gamma; Receptor, Cannabinoid, CB1; Serotonin; Signal Transduction; Time Factors; Vasodilation | 2012 |
The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action.
The incidence of melanoma is considerably increasing worldwide. Frequent failing of classical treatments led to development of novel therapeutic strategies aiming at managing advanced forms of this skin cancer. Additionally, the implication of the endocannabinoid system in malignancy is actively investigated.. We investigated the cytotoxicity of endocannabinoids and their hydrolysis inhibitors on the murine B16 melanoma cell line using a MTT test. Enzyme and receptor expression was measured by RT-PCR and enzymatic degradation of endocannabinoids using radiolabeled substrates. Cell death was assessed by Annexin-V/Propidium iodine staining. Tumors were induced in C57BL/6 mice by s.c. flank injection of B16 melanoma cells. Mice were injected i.p. for six days with vehicle or treatment, and tumor size was measured each day and weighted at the end of the treatment. Haematoxylin-Eosin staining and TUNEL assay were performed to quantify necrosis and apoptosis in the tumor and endocannabinoid levels were quantified by HPLC-MS. Tube formation assay and CD31 immunostaining were used to evaluate the antiangiogenic effects of the treatments.. The N-arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol and N- palmitoylethanolamine (PEA) reduced viability of B16 cells. The association of PEA with the fatty acid amide hydrolase (FAAH) inhibitor URB597 considerably reduced cell viability consequently to an inhibition of PEA hydrolysis and an increase of PEA levels. The increase of cell death observed with this combination of molecules was confirmed in vivo where only co-treatment with both PEA and URB597 led to decreased melanoma progression. The antiproliferative action of the treatment was associated with an elevation of PEA levels and larger necrotic regions in the tumor.. This study suggests the interest of targeting the endocannabinoid system in the management of skin cancer and underlines the advantage of associating endocannabinoids with enzymatic hydrolysis inhibitors. This may contribute to the improvement of long-term palliation or cure of melanoma. Topics: Amides; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Cell Death; Cell Line, Tumor; Cell Survival; Disease Models, Animal; Drug Synergism; Endocannabinoids; Ethanolamines; Male; Mass Spectrometry; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Palmitic Acids; Polyunsaturated Alkamides; Random Allocation; Reverse Transcriptase Polymerase Chain Reaction; Skin Neoplasms | 2012 |
Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: a pilot study.
Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. In this condition, the subject eats also when not in a state of short-term energy depletion, and food is consumed uniquely because of its gustatory rewarding properties. The physiological mechanisms underlying this eating behavior are not deeply understood, but endogenous rewarding mediators like ghrelin and endocannabinoids are likely involved.. To explore the role of these substances in hedonic eating, we measured changes in their plasma levels in eight satiated healthy subjects after ad libitum consumption of highly palatable food as compared with the consumption of nonpalatable food in isoenergetic amounts with the same nutrient composition of the palatable food.. The consumption of food for pleasure was characterized by increased peripheral levels of both the peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol. Levels of the other endocannabinoid anandamide and of anandamide-related mediators oleoylethanolamide and palmitoylethanolamide, instead, progressively decreased after the ingestion of both highly pleasurable and isoenergetic nonpleasurable food. A positive correlation was found between plasma 2-arachidonoyl glycerol and ghrelin during hedonic but not nonhedonic, eating.. The present preliminary findings suggest that when motivation to eat is generated by the availability of highly palatable food and not by food deprivation, a peripheral activation of two endogenous rewarding chemical signals is observed. Future research should confirm and extend our results to better understand the phenomenon of hedonic eating, which influences food intake and, ultimately, body mass. Topics: Adult; Amides; Appetite; Arachidonic Acids; Blood Glucose; Cannabinoid Receptor Modulators; Endocannabinoids; Energy Intake; Ethanolamines; Feeding Behavior; Female; Ghrelin; Glycerides; Humans; Male; Oleic Acids; Palmitic Acids; Pilot Projects; Pleasure; Polyunsaturated Alkamides; Reference Values; Satiety Response; Young Adult | 2012 |
Lack of effect of chronic pre-treatment with the FAAH inhibitor URB597 on inflammatory pain behaviour: evidence for plastic changes in the endocannabinoid system.
Elevating levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is a major focus of pain research, purported to be a safer approach devoid of cannabinoid receptor-mediated side effects. Here, we have determined the effects of sustained pharmacological inhibition of FAAH on inflammatory pain behaviour and if pharmacological inhibition of FAAH was as effective as genetic deletion of FAAH on pain behaviour.. Effects of pre-treatment with a single dose, versus 4 day repeated dosing with the selective FAAH inhibitor, URB597 (i.p. 0.3 mg·kg⁻¹), on carrageenan-induced inflammatory pain behaviour and spinal pro-inflammatory gene induction were determined in rats. Effects of pain induction and of the drug treatments on levels of arachidonoyl ethanolamide (AEA), palmitoyl ethanolamide (PEA) and oleolyl ethanolamide (OEA) in the spinal cord were determined.. Single, but not repeated, URB597 treatment significantly attenuated the development of inflammatory hyperalgesia (P < 0.001, vs. vehicle-treated animals). Neither mode of URB597 treatment altered levels of AEA, PEA and OEA in the hind paw, or carrageenan-induced paw oedema. Single URB597 treatment produced larger increases in AEA, PEA and OEA in the spinal cord, compared with those after repeated administration. Single and repeated URB597 treatment decreased levels of immunoreactive N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) in the spinal cord and attenuated carrageenan-induced spinal pro-inflammatory gene induction.. Changes in the endocannabinoid system may contribute to the loss of analgesic effects following repeated administration of low dose URB597 in this model of inflammatory pain. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Behavior, Animal; Benzamides; Carbamates; Disease Models, Animal; Drug Administration Schedule; Endocannabinoids; Ethanolamines; Inflammation; Male; Oleic Acids; Pain; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Spinal Cord | 2012 |
Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1.
Primary astrocytomas of grade 3 or 4 according to the classification system of the World Health Organization (high-grade astrocytomas or HGAs) are preponderant among adults and are almost invariably fatal despite the use of multimodal therapy. Here we show that the juvenile brain has an endogenous defense mechanism against HGAs. Neural precursor cells (NPCs) migrate to HGAs, reduce glioma expansion and prolong survival time by releasing endovanilloids that activate the vanilloid receptor (transient receptor potential vanilloid subfamily member-1 or TRPV1) on HGA cells. TRPV1 is highly expressed in tumor and weakly expressed in tumor-free brain. TRPV1 stimulation triggers tumor cell death through the branch of the endoplasmic reticulum stress pathway that is controlled by activating transcription factor-3 (ATF3). The antitumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid arvanil, suggesting that TRPV1 agonists have potential as new HGA therapeutics. Topics: Aging; Amides; Amidohydrolases; Animals; Antineoplastic Agents; Apoptosis; Arachidonic Acids; Brain; Brain Neoplasms; Capsaicin; Cell Movement; Culture Media, Conditioned; Dopamine; Endocannabinoids; Ethanolamines; Female; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, SCID; Neoplasm Proteins; Neural Stem Cells; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Real-Time Polymerase Chain Reaction; RNA, Small Interfering; TRPV Cation Channels; Tumor Cells, Cultured | 2012 |
Fatty acid amide hydrolase ablation promotes ectopic lipid storage and insulin resistance due to centrally mediated hypothyroidism.
Fatty acid amide hydrolase (FAAH) knockout mice are prone to excess energy storage and adiposity, whereas mutations in FAAH are associated with obesity in humans. However, the molecular mechanism by which FAAH affects energy expenditure (EE) remains unknown. Here we show that reduced energy expenditure in FAAH(-/-) mice could be attributed to decreased circulating triiodothyronine and thyroxine concentrations secondary to reduced mRNA expression of both pituitary thyroid-stimulating hormone and hypothalamic thyrotropin-releasing hormone. These reductions in the hypothalamic-pituitary-thyroid axis were associated with activation of hypothalamic peroxisome proliferating-activated receptor γ (PPARγ), and increased hypothalamic deiodinase 2 expression. Infusion of NAEs (anandamide and palmitoylethanolamide) recapitulated increases in PPARγ-mediated decreases in EE. FAAH(-/-) mice were also prone to diet-induced hepatic insulin resistance, which could be attributed to increased hepatic diacylglycerol content and protein kinase Cε activation. Our data indicate that FAAH deletion, and the resulting increases in NAEs, predispose mice to ectopic lipid storage and hepatic insulin resistance by promoting centrally mediated hypothyroidism. Topics: Amides; Amidohydrolases; Analysis of Variance; Animals; Arachidonic Acids; Chromatography, Liquid; Endocannabinoids; Energy Metabolism; Ethanolamines; Hypothyroidism; Immunoblotting; Insulin Resistance; Mice; Mice, Knockout; Palmitic Acids; Polymerase Chain Reaction; Polyunsaturated Alkamides; PPAR gamma; Tandem Mass Spectrometry; Thyrotropin; Thyrotropin-Releasing Hormone; Thyroxine; Triiodothyronine | 2012 |
Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes.
Cannabidiol (CBD) and Δ(9) -tetrahydrocannabinol (THC) interact with transient receptor potential (TRP) channels and enzymes of the endocannabinoid system.. The effects of 11 pure cannabinoids and botanical extracts [botanical drug substance (BDS)] from Cannabis varieties selected to contain a more abundant cannabinoid, on TRPV1, TRPV2, TRPM8, TRPA1, human recombinant diacylglycerol lipase α (DAGLα), rat brain fatty acid amide hydrolase (FAAH), COS cell monoacylglycerol lipase (MAGL), human recombinant N-acylethanolamine acid amide hydrolase (NAAA) and anandamide cellular uptake (ACU) by RBL-2H3 cells, were studied using fluorescence-based calcium assays in transfected cells and radiolabelled substrate-based enzymatic assays. Cannabinol (CBN), cannabichromene (CBC), the acids (CBDA, CBGA, THCA) and propyl homologues (CBDV, CBGV, THCV) of CBD, cannabigerol (CBG) and THC, and tetrahydrocannabivarin acid (THCVA) were also tested.. CBD, CBG, CBGV and THCV stimulated and desensitized human TRPV1. CBC, CBD and CBN were potent rat TRPA1 agonists and desensitizers, but THCV-BDS was the most potent compound at this target. CBG-BDS and THCV-BDS were the most potent rat TRPM8 antagonists. All non-acid cannabinoids, except CBC and CBN, potently activated and desensitized rat TRPV2. CBDV and all the acids inhibited DAGLα. Some BDS, but not the pure compounds, inhibited MAGL. CBD was the only compound to inhibit FAAH, whereas the BDS of CBC > CBG > CBGV inhibited NAAA. CBC = CBG > CBD inhibited ACU, as did the BDS of THCVA, CBGV, CBDA and THCA, but the latter extracts were more potent inhibitors.. These results are relevant to the analgesic, anti-inflammatory and anti-cancer effects of cannabinoids and Cannabis extracts. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Cannabinoids; Cannabis; Chlorocebus aethiops; COS Cells; Endocannabinoids; Ethanolamines; Glycerides; HEK293 Cells; Humans; Lipoprotein Lipase; Monoacylglycerol Lipases; Palmitic Acids; Plant Extracts; Polyunsaturated Alkamides; Rats; Transient Receptor Potential Channels | 2011 |
Central and peripheral endocannabinoids and cognate acylethanolamides in humans: association with race, adiposity, and energy expenditure.
Peripheral and central endocannabinoids and cognate acylethanolamides (AEs) may play important but distinct roles in regulating energy balance.. We hypothesized that in humans central/peripheral endocannabinoids are differently associated with adiposity and energy expenditure and differ by race.. We examined associations of arachindonoylethanolamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleoylethanolamide (OEA) assayed in plasma and cerebrospinal fluid (CSF) with race, adiposity, and energy expenditure.. In this monitored clinical inpatient study, CSF was obtained by lumbar puncture in 27 individuals (12 Caucasian, 11 American Indian, and four African-American). Twenty-four hour and sleep energy expenditure were measured by indirect calorimetry in a respiratory chamber.. Samples were analyzed from a previous study originally designed to test a blood-brain barrier leptin transport deficit in human obesity.. CSF (but not peripheral) 2-arachidonoylglycerol was significantly increased in American Indians compared with Caucasians (18.48 ± 6.17 vs. 10.62 ± 4.58 pmol/ml, P < 0.01). In the whole group, peripheral AEs were positively but in CSF negatively associated with adiposity. However, in multivariate models adjusted for the other peripheral and CSF AEs, peripheral arachindonoylethanolamide was the only AE significantly associated with adiposity. Interestingly, CSF OEA concentrations were positively associated with adjusted 24 hour and sleep energy expenditure (r = 0.47, P < 0.05; r = 0.42, P < 0.05), but peripheral OEA was not.. These data indicate a central alteration of the endocannabinoid system in American Indians and furthermore show that AEs in both compartments play an important but distinct role in human energy balance regulation. Topics: Absorptiometry, Photon; Adiposity; Amides; Anti-Obesity Agents; Arachidonic Acids; Blood Glucose; Cannabinoid Receptor Modulators; Endocannabinoids; Energy Metabolism; Ethanolamines; Ethnicity; Glycerides; Humans; Insulin; Leptin; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant | 2011 |
LC-MS/MS-ESI method for simultaneous quantitation of three endocannabinoids and its application to rat pharmacokinetic studies.
An LC-MS/MS-ESI method has been validated for simultaneous estimation of the three endocannabinoids; N-arachidonoylethanolamine (AEA), N-oleoylethanolamine (OEA) and palmitoylethanolamide (PEA), in surrogate matrix using AEA-d (4) as an internal standard with highest sensitivity over the existing methods. Simple precipitation was used to extract analytes and these were subsequently analyzed on a monolithic column. Linear response function was established over the concentration range 12.3 to 1225 pg/ml for AEA (r > 0.994); 0.70 to 641 ng/ml for OEA (r > 0.999) and 0.54 to 321 ng/ml (r > 0.998) for PEA. The intra- and inter-day precision values met the acceptance to criteria as per US FDA guidelines. Analytes were found to be stable in the battery of stability studies. The method was applied to quantify endogenous levels of analytes in rat plasma. Topics: Amides; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Chromatography, Liquid; Endocannabinoids; Ethanolamines; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Reference Standards; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry | 2011 |
Depolarizing and calcium-mobilizing stimuli fail to enhance synthesis and release of endocannabinoids from rat brain cerebral cortex slices.
The concentrations of the endocannabinoids 2-arachidonoylglycerol (2-AG) and N-arachidonylethanolamine (anandamide) were examined in rat brain cerebral cortex slices and surrounding medium. Basal concentrations of endocannabinoids were similar to those identified previously in rat brain, with anandamide content being much lower (19 pmol/g) than that of 2-AG (7300 pmol/g). In contrast, basal concentrations in the surrounding medium were proportionally much lower for 2-arachidonoylglycerol (16 pmol/mL) compared to anandamide (0.6 pmol/mL). Incubation of slices with glutamate receptor agonists, depolarizing concentrations of KCl, or ionomycin failed to alter tissue concentrations of endocannabinoids, while endocannabinoids in the medium were unaltered by elevated KCl. Cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester, an inhibitor of fatty acid amide hydrolase, significantly enhanced tissue concentrations of anandamide (and related N-acylethanolamines), without altering 2-AG, while evoking proportional elevations of anandamide in the medium. Removal of extracellular calcium ions failed to alter tissue concentrations of anandamide, but significantly reduced 2-AG in the tissue by 90% and levels in the medium to below the detection limit. Supplementation of the medium with 50 μM N-oleoylethanolamine only raised tissue concentrations of N-oleoylethanolamine in the presence of cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester and failed to alter either tissue or medium anandamide or 2-AG concentrations. These results highlight the ongoing turnover of endocannabinoids, and the importance of calcium ions in maintaining 2-AG concentrations in this tissue. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Calcium; Calcium Signaling; Cannabinoid Receptor Modulators; Cerebral Cortex; Endocannabinoids; Ethanolamines; Glycerides; In Vitro Techniques; Inositol; Male; Monoacylglycerol Lipases; Oleic Acids; Palmitic Acids; Phospholipids; Polyunsaturated Alkamides; Potassium Chloride; Rats; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry | 2011 |
Increasing antiproliferative properties of endocannabinoids in N1E-115 neuroblastoma cells through inhibition of their metabolism.
The antitumoral properties of endocannabinoids received a particular attention these last few years. Indeed, these endogenous molecules have been reported to exert cytostatic, apoptotic and antiangiogenic effects in different tumor cell lines and tumor xenografts. Therefore, we investigated the cytotoxicity of three N-acylethanolamines--N-arachidonoylethanolamine (anandamide, AEA), N-palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA)--which were all able to time- and dose-dependently reduce the viability of murine N1E-115 neuroblastoma cells. Moreover, several inhibitors of FAAH and NAAA, whose presence was confirmed by RT-PCR in the cell line, induced cell cytotoxicity and favored the decrease in cell viability caused by N-acylethanolamines. The most cytotoxic treatment was achieved by the co-incubation of AEA with the selective FAAH inhibitor URB597, which drastically reduced cell viability partly by inhibiting AEA hydrolysis and consequently increasing AEA levels. This combination of molecules synergistically decreased cell proliferation without inducing cell apoptosis or necrosis. We found that these effects are independent of cannabinoid, TRPV1, PPARα, PPARγ or GPR55 receptors activation but seem to occur through a lipid raft-dependent mechanism. These findings further highlight the interest of targeting the endocannabinoid system to treat cancer. More particularly, this emphasizes the great potential benefit of designing novel anti-cancerous therapies based on the association of endocannabinoids and inhibitors of their hydrolysis. Topics: Amides; Animals; Antineoplastic Agents; Arachidonic Acids; Cannabinoid Receptor Modulators; Cell Line, Tumor; Cell Proliferation; Endocannabinoids; Ethanolamines; Metabolism; Mice; Neoplasms; Neuroblastoma; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides | 2011 |
Endocannabinoids and cannabinoid analogues block human cardiac Kv4.3 channels in a receptor-independent manner.
Endocannabinoids are amides and esters of long chain fatty acids that can modulate ion channels through both receptor-dependent and receptor-independent effects. Nowadays, their effects on cardiac K(+) channels are unknown even when they can be synthesized within the heart. We have analyzed the direct effects of endocannabinoids, such as anandamide (AEA), 2-arachidonoylglycerol (2-AG), the endogenous lipid lysophosphatidylinositol, and cannabinoid analogues such as palmitoylethanolamide (PEA), and oleoylethanolamide, as well as the fatty acids from which they are endogenously synthesized, on human cardiac Kv4.3 channels, which generate the transient outward K(+) current (I(to1)). Currents were recorded in Chinese hamster ovary cells, which do not express cannabinoid receptors, by using the whole-cell patch-clamp. All these compounds inhibited I(Kv4.3) in a concentration-dependent manner, AEA and 2-AG being the most potent (IC(50) approximately 0.3-0.4 microM), while PEA was the least potent. The potency of block increased as the complexity and the number of C atoms in the fatty acyl chain increased. The effects were not mediated by modifications in the lipid order and microviscosity of the membrane and were independent of the presence of MiRP2 or DPP6 subunits in the channel complex. Indeed, effects produced by AEA were reproduced in human atrial I(to1) recorded in isolated myocytes. Moreover, AEA effects were exclusively apparent when it was applied to the external surface of the cell membrane. These results indicate that at low micromolar concentrations the endocannabinoids AEA and 2-AG directly block human cardiac Kv4.3 channels, which represent a novel molecular target for these compounds. Topics: Amides; Animals; Arachidonic Acid; Arachidonic Acids; Cannabinoid Receptor Modulators; Cannabinoids; CHO Cells; Cricetinae; Cricetulus; Endocannabinoids; Ethanolamines; Fatty Acids; Glycerides; Heart; Humans; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Shal Potassium Channels | 2010 |
Circulating and hepatic endocannabinoids and endocannabinoid-related molecules in patients with cirrhosis.
Endocannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Endocannabinoid-related molecules like oleoyl-ethanolamine (OEA) and palmitoyl-ethanolamine (PEA) have also been identified. AEA contributes to the pathogenesis of cardiovascular alterations in experimental cirrhosis, but data on the endocannabinoid system in human cirrhosis are lacking. Thus, we aimed to assess whether circulating and hepatic endocannabinoids are upregulated in cirrhotic patients and whether their levels correlate with systemic haemodynamics and liver function.. The endocannabinoid levels were measured in peripheral and hepatic veins and liver tissue by isotope-dilution liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Systemic haemodynamics were assessed by the transthoracic electrical bioimpedance technique. Portal pressure was evaluated by hepatic venous pressure gradient.. Circulating AEA and, to a greater extent, PEA and OEA were significantly higher in cirrhotic patients than in controls. PEA and OEA were also increased in the cirrhotic liver tissue. AEA, OEA and PEA levels were significantly higher in peripheral than in the hepatic veins of cirrhotic patients, while the opposite occurred for 2-AG. Finally, circulating AEA, OEA and PEA correlated with parameters of liver function, such as serum bilirubin and international normalized ratio. No correlations were found with systemic haemodynamics.. The endocannabinoid system is upregulated in human cirrhosis. Peripheral AEA is increased in patients with a high model of end-stage liver disease score and may reflect the extent of liver dysfunction. In contrast, the 2-AG levels, the other major endocannabinoid, are not affected by cirrhosis. The upregulation of the endocannabinoid-related molecules, OEA and PEA, is even greater than that of AEA, prompting pharmacological studies on these compounds. Topics: Adult; Amides; Arachidonic Acids; Bilirubin; Biomarkers; Cannabinoid Receptor Modulators; Case-Control Studies; Chromatography, Liquid; Electric Impedance; Endocannabinoids; Ethanolamines; Female; Glycerides; Hemodynamics; Humans; International Normalized Ratio; Italy; Liver; Liver Cirrhosis; Liver Function Tests; Male; Mass Spectrometry; Middle Aged; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Radioisotope Dilution Technique; Severity of Illness Index; Up-Regulation | 2010 |
Endocannabinoids and non-endocannabinoid fatty acid amides in cirrhosis.
Topics: Amides; Arachidonic Acids; Biomarkers; Cannabinoid Receptor Modulators; Endocannabinoids; Ethanolamines; Glycerides; Hemodynamics; Humans; International Normalized Ratio; Liver; Liver Cirrhosis; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Severity of Illness Index; Up-Regulation | 2010 |
Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients.
The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT) of subjects with both obesity and type 2 diabetes (OBT2D), characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB).. The levels of anandamide and 2-AG, and of the anandamide-related PPARalpha ligands, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW) subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp.. As compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p < 0.05), and 2-AG levels 2.3-fold reduced (p < .05), in OBT2D but not in OB subjects. Anandamide, OEA and PEA correlated positively (p < .05) with SAT leptin mRNA and free fatty acid during hyperinsulinaemic clamp, and negatively with SAT LPL activity and plasma HDL-cholesterol, which were all specifically altered in OBT2D subjects.. The observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners) and 2-AG in obesity and type 2 diabetes. Topics: Adiposity; Adult; Amides; Arachidonic Acids; Cannabinoid Receptor Modulators; Diabetes Mellitus, Type 2; Endocannabinoids; Ethanolamines; Female; Humans; Lipids; Male; Middle Aged; Obesity; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Subcutaneous Fat | 2010 |
Possible Anandamide and Palmitoylethanolamide involvement in human stroke.
Endocannabinoids (eCBs) are ubiquitous lipid mediators that act on specific (CB1, CB2) and non-specific (TRPV1, PPAR) receptors. Despite many experimental animal studies proved eCB involvement in the pathogenesis of stroke, such evidence is still lacking in human patients. Our aim was to determine eCB peripheral levels in acute stroke patients and evaluate their relationship with clinical disability and stroke volume.. A cohort of ten patients with a first acute (within six hours since symptoms onset) ischemic stroke and a group of eight age- and sex-matched normal subjects were included. Groups were also matched for metabolic profile. All subjects underwent a blood sample collection for anandamide (AEA), 2-arachidonoylglycerol (2-AG) and palmitoylethanolamide (PEA) measurement; blood sampling was repeated in patients on admission (T0), at 6 (T1) and 18 hours (T2) thereafter. Patients neurological impairment was assessed using NIHSS and Fugl-Meyer Scale arm subitem (FMSa); stroke volume was determined on 48 h follow-up brain CT scans. Blood samples were analyzed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry.. 1)T0 AEA levels were significantly higher in stroke patients compared to controls. 2)A significant inverse correlation between T0 AEA levels and FMSa score was found. Moreover a positive correlation between T0 AEA levels and stroke volume were found in stroke patients. T0 PEA levels in stroke patients were not significantly different from the control group, but showed a significant correlation with the NIHSS scores. T0 2-AG levels were lower in stroke patients compared to controls, but such difference did not reach the significance threshold.. This is the first demonstration of elevated peripheral AEA levels in acute stroke patients. In agreement with previous murine studies, we found a significant relationship between AEA or PEA levels and neurological involvement, such that the greater the neurological impairment, the higher were these levels. Topics: Aged; Aged, 80 and over; Amides; Arachidonic Acids; Cannabinoid Receptor Modulators; Chromatography, Liquid; Endocannabinoids; Ethanolamines; Glycerides; Humans; Male; Mass Spectrometry; Metabolomics; Middle Aged; Nervous System Diseases; Palmitic Acids; Polyunsaturated Alkamides; Stroke | 2010 |
Simultaneous measurement of three N-acylethanolamides in human bio-matrices using ultra performance liquid chromatography-tandem mass spectrometry.
Endocannabinoids including N-acylethanolamides (NAEs) are a family of lipid-related signaling molecules implicated in many physiological and disease states which elicit their activities via the cannabinoid receptors. Anandamide (N-arachidonoylethanolamine, AEA) is the most characterized endocannabinoid and has been detected in many tissues and bio-fluids including human plasma and the central nervous system. The endocannabinoid-like NAEs, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are described as entourage compounds because they illicit similar physiological effects to AEA but have little or no affinity for cannabinoid receptors. As entourage compounds, levels of these NAEs can greatly influence the efficacy of AEA yet there are few studies which measure these compounds in bio-fluids. Here we describe a rapid, highly sensitive, specific and highly reproducible ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the analysis of AEA, OEA, and PEA in human bio-fluids including plasma, serum, breast milk, and amniotic fluids. This validated method using deuterated (AEA-d(8), OEA-d(2), and PEA-d(4)) internal standards, represents an improvement over previous analyses in terms of run time (4 min), limit of detection (0.9 fmol on column for AEA and PEA and 4.4 fmol on column for OEA), precision (relative standard deviations of peak areas: 3.1% (AEA), 2.9% (OEA), and 5.4% (PEA) for 133 fmol on column) and accuracy (95.1-104.9%). The sensitivity and precision of the validated method described here suggests that this method is suitable for the analysis of AEA, OEA, and PEA in clinical samples and may be utilized for the investigation of bio-matrices containing limited amounts of NAEs. Topics: Amides; Arachidonic Acids; Chromatography, Liquid; Endocannabinoids; Ethanolamines; Humans; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Tandem Mass Spectrometry | 2010 |
Quantitative analysis of anandamide and related acylethanolamides in human seminal plasma by ultra performance liquid chromatography tandem mass spectrometry.
The endocannabinoids anandamide, palmitoylethanolamide and oleoylethanolamide have been detected in human seminal plasma and are bioactive lipids implicated in regulation of sperm motility, capacitation and acrosome reaction. Several methods exist for endocannabinoid quantification but none have been validated for measurement in human seminal plasma. We describe sensitive, robust, reproducible solid phase and isotope-dilution UHPLC-ESI-MS/MS methods for the extraction and quantification of anandamide, palmitoylethanolamide and oleoylethanolamide in human seminal plasma. Precision and accuracy were evaluated using pooled seminal plasma over a 4 day period. For all analytes, the inter- and intraday precision (CV%) was between 6.6-17.7% and 6.3-12.5%, respectively. Analyses were linear over the range 0.237-19nM for anandamide and oleoylethanolamide and 0.9-76nM for PEA. Limits of detection (signal-to-noise >3) were 50, 100 and 100fmol/mL and limits of quantification (signal-to-noise >10) were 100, 200 and 200fmol/mL, respectively for anandamide, palmitoylethanolamide and oleoylethanolamide. Anandamide and oleoylethanolamide were stable at -80°C for up to 4 weeks, but palmitoylethanolamide declined significantly. We assessed seminal plasma from 40 human donors with normozoospermia and found mean (inter-quartile range) concentrations of 0.21nM (0.09-0.27), 1.785nM (0.48-2.32) and 15.54nM (7.05-16.31) for anandamide, oleoylethanolamide and palmitoylethanolamide, respectively. Consequently, this UHPLC-ESI-MS/MS method represents a rapid, reliable and reproducible technique for the analysis of these endocannabinoids in fresh seminal plasma. Topics: Amides; Arachidonic Acids; Cannabinoid Receptor Modulators; Chromatography, High Pressure Liquid; Drug Stability; Endocannabinoids; Ethanolamines; Humans; Linear Models; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Reproducibility of Results; Semen; Sensitivity and Specificity; Solid Phase Extraction; Tandem Mass Spectrometry | 2010 |
The endocannabinoid system is modulated in response to spinal cord injury in rats.
Endocannabinoids are lipid mediators with protective effects in many diseases of the nervous system. We have studied the modulation of the endocannabinoid system after a spinal cord contusion in rats. In early stages, lesion induced increases of anandamide and palmitoylethanolamide (PEA) levels, an upregulation of the synthesizing enzyme NAPE-phospholipase D and a downregulation of the degradative enzyme FAAH. In delayed stages, lesion induced increases in 2-arachidonoylglycerol and a strong upregulation of the synthesizing enzyme DAGL-alpha, that is expressed by neurons, astrocytes and immune infiltrates. The degradative enzyme MAGL was also moderately increased but only 7 days after the lesion. We have studied the cellular targets for the newly formed endocannabinoids using RT-PCR and immunohistochemistry against CB(1) and CB(2) receptors. We observed that CB(1) was constitutively expressed by neurons and oligodendrocytes and induced in reactive astrocytes. CB(2) receptor was strongly upregulated after lesion, and mostly expressed by immune infiltrates and astrocytes. The endocannabinoid system may represent an interesting target for new therapeutical approaches to spinal cord injury. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Astrocytes; Cannabinoid Receptor Modulators; Endocannabinoids; Ethanolamines; Glycerides; Immunohistochemistry; Lipoprotein Lipase; Macrophages; Male; Neurons; Palmitic Acids; Phospholipase D; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Spinal Cord; Spinal Cord Injuries | 2009 |
Biochemical and biological properties of 4-(3-phenyl-[1,2,4] thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide, a mechanism-based inhibitor of fatty acid amide hydrolase.
Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme within the amidase-signature family. It catalyzes the hydrolysis of several endogenous biologically active lipids, including anandamide (arachidonoyl ethanolamide), oleoyl ethanolamide, and palmitoyl ethanolamide. These endogenous FAAH substrates have been shown to be involved in a variety of physiological and pathological processes, including synaptic regulation, regulation of sleep and feeding, locomotor activity, pain and inflammation. Here we describe the biochemical and biological properties of a potent and selective FAAH inhibitor, 4-(3-phenyl-[1,2,4]thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide (JNJ-1661010). The time-dependence of apparent IC(50) values at rat and human recombinant FAAH, dialysis and mass spectrometry data indicate that the acyl piperazinyl fragment of JNJ-1661010 forms a covalent bond with the enzyme. This bond is slowly hydrolyzed, with release of the piperazinyl fragment and recovery of enzyme activity. The lack of inhibition observed in a rat liver esterase assay suggests that JNJ-1661010 is not a general esterase inhibitor. JNJ-1661010 is >100-fold preferentially selective for FAAH-1 when compared to FAAH-2. JNJ-1661010 dose-dependently increases arachidonoyl ethanolamide, oleoyl ethanolamide, and palmitoyl ethanolamide in the rat brain. The compound attenuates tactile allodynia in the rat mild thermal injury model of acute tissue damage and in the rat spinal nerve ligation (Chung) model of neuropathic pain. JNJ-1661010 also diminishes thermal hyperalgesia in the inflammatory rat carrageenan paw model. These data suggest that FAAH inhibitors with modes of action similar to JNJ-1661010 may be useful clinically as broad-spectrum analgesics. Topics: Amides; Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Brain; Carrageenan; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Hot Temperature; Humans; Hydrolysis; Isoenzymes; Kinetics; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuralgia; Oleic Acids; Pain; Pain Measurement; Pain Threshold; Palmitic Acids; Piperazines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Reaction Time; Recombinant Proteins; Thiadiazoles | 2009 |
Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress.
Central endocannabinoid signaling is known to be responsive to stressful stimuli; however, there is no research to date characterizing the effects of stress on peripheral endocannabinoid content. The current study examined serum content of the endocannabinoid ligands N-arachidonylethanolamide (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), and the non-cannabinoid N-acyl ethanolamine (NAE) molecules palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) under basal conditions, immediately following the Trier Social Stress Test (TSST), and 30 min thereafter, in 15 medication-free women diagnosed with major depression, and 15 healthy matched controls. Basal serum concentrations of AEA and 2-AG, but not PEA or OEA, were significantly reduced in women with major depression relative to matched controls, indicating a deficit in peripheral endocannabinoid activity. Immediately following the TSST, serum 2-AG concentrations were increased compared to baseline; serum AEA concentration was unchanged at this time point. Serum concentrations of PEA and OEA were significantly lower than baseline 30 min following the cessation of the TSST. The magnitude of these responses did not differ between depressed and control subjects. These are the first data to demonstrate that the peripheral endocannabinoid/NAE system is responsive to exposure to stress. Topics: Adult; Amides; Arachidonic Acids; Cannabinoid Receptor Modulators; Case-Control Studies; Depressive Disorder, Major; Endocannabinoids; Ethanolamines; Female; Glycerides; Humans; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Stress, Psychological | 2009 |
Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain.
Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs) are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG), and the related compound N-palmitoylethanolamine (PEA), in neuropathic spinal cord. Selective spinal nerve ligation (SNL) in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days) significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P < 0.001). Minocycline treatment also significantly attenuated OX-42 immunoreactivity, a marker of activated microglia, in the ipsilateral (P < 0.001) and contralateral (P < 0.01) spinal cord of SNL rats, compared to vehicle controls. Minocycline treatment significantly (P < 0.01) decreased levels of 2-AG and significantly (P < 0.01) increased levels of PEA in the ipsilateral spinal cord of SNL rats, compared to the contralateral spinal cord. Thus, activation of microglia affects spinal levels of endocannabinoids and related compounds in neuropathic pain states. Topics: Amides; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Cell Proliferation; Disease Models, Animal; Endocannabinoids; Ethanolamines; Glycerides; Microglia; Minocycline; Neuralgia; Palmitic Acids; Polyunsaturated Alkamides; Rats; Spinal Cord | 2009 |
Simultaneous quantitative analysis of N-acylethanolamides in clinical samples.
A simple and rapid analytical method is described for the simultaneous quantitative analysis of three different N-acylethanolamides in human biological samples: anandamide (AEA), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA). The method is based on a new hybrid solid phase extraction-precipitation technology followed by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) analysis using d(4)-AEA as the internal standard. The method is linear up to 100ng/ml with a limit of quantitation of 50pg/ml for AEA and 100pg/ml for OEA and PEA. Good reproducibility, accuracy, and precision were demonstrated during the method validation. Application of this new methodology to the analysis of clinical study samples is presented. Topics: Adolescent; Adult; Amides; Amidohydrolases; Arachidonic Acids; Calibration; Cannabinoids; Chromatography, High Pressure Liquid; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Female; Humans; Leukocytes, Mononuclear; Male; Middle Aged; Molecular Structure; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Reproducibility of Results; Semen; Solid Phase Microextraction; Tandem Mass Spectrometry; Young Adult | 2009 |
Plasma endocannabinoid levels in multiple sclerosis.
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS. Therapies that affect the endocannabinoid (EC) system may have immunomodulatory, symptomatic and neuroprotective effects.. The aim of this study was to determine how levels of EC and related compounds are altered in MS.. Plasma and whole blood were collected from 24 MS patients (10 relapsing-remitting (RR); 8 secondary-progressive (SP); 6 primary-progressive (PP); 19 females; 25-66 years) and 17 controls (10 females; 22-62 years). Plasma EC and related compounds were quantified by liquid chromatography-tandem mass spectrometry. Fatty acid amide hydrolase (FAAH), cannabinoid receptors CB(1) and CB(2) mRNA were measured by quantitative reverse transcriptase-polymerase chain reaction.. Anandamide (AEA) and palmitoylethanolamide (PEA) were higher in RRMS compared to controls (p=0.001 and p=0.027). AEA, PEA and oleoylethanolamide were also increased in SPMS plasma (p=0.001, p=0.004, and p=0.005). PPMS patients had higher AEA plasma levels compared to controls (p=0.009). FAAH mRNA was decreased in SPMS (p=0.04) but not in RRMS or PPMS blood. CB(1) (p=0.012) and CB(2) mRNA (p=0.003) were increased in the PPMS.. The EC system is altered in MS. It may be dynamically modulated depending on the subtype of the disease, but further studies with larger subgroups are needed to confirm this. Topics: Adult; Aged; Amides; Amidohydrolases; Arachidonic Acids; Brain; Brain Chemistry; Cannabinoid Receptor Modulators; Cannabinoids; Chromatography, Liquid; Cytoprotection; Disability Evaluation; Endocannabinoids; Ethanolamines; Female; Humans; Male; Mass Spectrometry; Middle Aged; Multiple Sclerosis; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Receptors, Cannabinoid; RNA, Messenger | 2009 |
Effect of nitric oxide donors on membrane tritium accumulation of endocannabinoids and related endogenous lipids.
The endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are metabolised by cells by hydrolysis to arachidonic acid followed by esterification into phospholipids. Here, we report that nitric oxide (NO) donors significantly increase the amount of tritium accumulated in the cell membranes of RBL2H3 rat basophilic cells, 3T3-L1 mouse fibroblast cells and b.End5 mouse brain endothelioma cells following incubation of the intact cells with AEA labelled in the arachidonate part of the molecule. Similar results were seen with 2-AG and with arachidonic acid, whilst the NO donors reduced the accumulation of tritium after incubation of RBL2H3 cells with AEA labelled in the ethanolamine part of the molecule. Pretreatment of intact cells with NO donors did not increase the activity of the enzyme mainly responsible for metabolism of AEA, fatty acid amide hydrolase (FAAH). Furthermore, inhibition of FAAH completely blocked the effect produced by NO donors in cells with a large FAAH component, suggesting that for AEA, the effects were downstream of the enzyme. These data raise the possibility that the cellular processing of endocannabinoids following its uptake can be regulated by nitric oxide. Topics: Amides; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Cell Line; Cell Membrane; Cyclic N-Oxides; Endocannabinoids; Ethanolamines; Free Radical Scavengers; Glycerides; Imidazoles; Lipid Metabolism; Mice; Nitric Oxide; Nitric Oxide Donors; Palmitic Acids; Polyunsaturated Alkamides; Rats; Signal Transduction; Tritium | 2009 |
'Entourage' effects of N-palmitoylethanolamide and N-oleoylethanolamide on vasorelaxation to anandamide occur through TRPV1 receptors.
The endocannabinoid N-arachidonoylethanolamide (anandamide) is co-synthesized with other N-acylethanolamides, namely N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), which have been shown to potentiate anandamide responses (so-called 'entourage effects') in non-vascular tissues. It remains unclear whether such interactions occur in the circulation.. In rat isolated small mesenteric arteries, the effects of PEA and OEA on relaxation to anandamide and tissue contents of the N-acylethanolamides were examined under myographic conditions.. Anandamide-induced relaxation was potentiated by pretreatment with PEA (10 microM) or OEA (1 microM), or in combination. The potentiation by PEA and OEA was endothelium-independent and abolished by treatment with capsaicin (10 microM), which desensitizes the transient receptor potential vanilloid type 1 (TRPV1) receptor system, or by the TRPV1 receptor antagonist, N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791) (2 microM). It was also observed at molar ratios of anandamide and PEA (or OEA) similar to those found in mesenteric arteries. PEA and inhibition of anandamide hydrolysis by 3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate (URB597) (1 microM) additively potentiated anandamide responses. On the other hand, PEA and OEA also induced vasorelaxation per se (rank order of potency: anandamide>OEA>PEA), but relaxation to the three N-acylethanolamides displayed different sensitivity to treatment with capsaicin, SB366791 and URB597. For example, relaxations to anandamide and OEA, but not PEA, were attenuated by both capsaicin and SB366791.. This study shows that PEA and OEA potentiate relaxant responses to anandamide through TRPV1 receptors in rat small mesenteric arteries. The congeners also induce vasorelaxation per se, suggesting a function for the N-acylethanolamides in vascular control. Topics: Amides; Animals; Arachidonic Acids; Dose-Response Relationship, Drug; Drug Combinations; Endocannabinoids; Ethanolamines; Male; Mesenteric Artery, Superior; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; TRPV Cation Channels; Vasodilation | 2008 |
Effect of acylethanolamides on lipid peroxidation and paraoxonase activity.
N-acylethanolamides (NAEs) are hydrophobic molecules synthesized in many tissues. An increase in the plasma levels of NAEs has been observed in human diseases. Previous studies have suggested that NAEs could exert a protective effect against oxidative stress. Aim of the study was to investigate whether NAEs (oleoylethanolamide, palmitoylethanolamide and anandamide), differing for acyl chain length and unsaturation, exert a protective role against plasma lipid peroxidation triggered by incubation with Cu2+2 or AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride). Moreover, we investigated the effect of NAEs on the activity of HDL-associated paraoxonase (PON1), an enzyme involved in the antioxidant end anti-inflammatory role of human high density lipoproteins (HDL). The results demonstrated that the NAEs protect plasma lipids and PON1 activity against AAPH and/or copper-induced oxidation. Topics: Adult; Amides; Amidines; Arachidonic Acids; Aryldialkylphosphatase; Endocannabinoids; Ethanolamines; Humans; Lipid Peroxidation; Middle Aged; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides | 2008 |
Endocannabinoids in chronic migraine: CSF findings suggest a system failure.
Based on experimental evidence of the antinociceptive action of endocannabinoids and their role in the modulation of trigeminovascular system activation, we hypothesized that the endocannabinoid system may be dysfunctional in chronic migraine (CM). We examined whether the concentrations of N-arachidonoylethanolamide (anandamide, AEA), palmitoylethanolamide (PEA), and 2-arachidonoylglycerol (2-AG) in the CSF of patients with CM and with probable CM and probable analgesic-overuse headache (PCM+PAOH) are altered compared with control subjects. The above endocannabinoids were measured by high-performance liquid chromatography (HPLC), and quantified by isotope dilution gas-chromatography/mass-spectrometry. Calcitonin gene-related peptide (CGRP) levels were also determined by RIA method and the end products of nitric oxide (NO), the nitrites, by HPLC. CSF concentrations of AEA were significantly lower and those of PEA slightly but significantly higher both in patients with CM and PCM+PAOH than in nonmigraineur controls (p<0.01 and p<0.02, respectively). A negative correlation was found between AEA and CGRP levels in CM and PCM+PAOH patients (r=0.59, p<0.01 and r=-0.65, p<0.007; respectively). A similar trend was observed between this endocannabinoid and nitrite levels. Reduced levels of AEA in the CSF of CM and PCM+PAOH patients may reflect an impairment of the endocannabinoid system in these patients, which may contribute to chronic head pain and seem to be related to increased CGRP and NO production. These findings support the potential role of the cannabinoid (CB)1 receptor as a possible therapeutic target in CM. Topics: Adult; Amides; Arachidonic Acids; Calcitonin Gene-Related Peptide; Cannabinoid Receptor Modulators; Chromatography, High Pressure Liquid; Chronic Disease; Endocannabinoids; Ethanolamines; Female; Gas Chromatography-Mass Spectrometry; Glycerides; Headache Disorders, Secondary; Humans; Male; Migraine Disorders; Nitrites; Palmitic Acids; Polyunsaturated Alkamides; Surveys and Questionnaires | 2007 |
Determination of anandamide and other fatty acyl ethanolamides in human serum by electrospray tandem mass spectrometry.
We developed a new selective liquid chromatography-electrospray ionization-tandem mass spectrometry method for the identification and quantification of anandamide (AEA), an endogenous cannabinoid receptor ligand, and other bioactive fatty acid ethanolamides (FAEs) in biological samples. Detection limit (0.025 pmol for AEA and 0.1 pmol for palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)) and quantification limit (0.2 pmol for AEA and 0.4 pmol for OEA and PEA) were in the high fmol to low pmol range for all analytes. Linear correlations (r(2)=0.99) were observed in the calibration curves for standard AEA over the range of 0.025-25 pmol and for standard PEA and OEA over the range of 0.1-500 pmol. This method provides a time-saving and sensitive alternative to existing methods for the analysis of FAEs in biological samples. Topics: Amides; Arachidonic Acids; Chromatography, Liquid; Endocannabinoids; Ethanolamines; Female; Humans; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Reproducibility of Results; Sensitivity and Specificity; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry | 2007 |
Overactivity of the intestinal endocannabinoid system in celiac disease and in methotrexate-treated rats.
The endocannabinoid system is upregulated in both human inflammatory bowel diseases and experimental models of colitis. In this study, we investigated whether this upregulation is a marker also of celiac disease-induced atrophy. The levels of the cannabinoid CB(1) receptor, of the endocannabinoids, anandamide, and 2-arachidonoyl-glycerol (2-AG), and of the anti-inflammatory mediator palmitoylethanolamide (PEA) were analyzed in bioptic samples from the duodenal mucosa of celiac patients at first diagnosis assessed by the determination of antiendomysial antibodies and histological examination. Samples were analyzed during the active phase of atrophy and after remission and compared to control samples from non-celiac patients. The levels of anandamide and PEA were significantly elevated (approx. 2- and 1.8-fold, respectively) in active celiac patients and so were those of CB(1) receptors. Anandamide levels returned to normal after remission with a gluten-free diet. We also analyzed endocannabinoid and PEA levels in the jejunum of rats 2, 3, and 7 days after treatment with methotrexate, which causes inflammatory features (assessed by histopathological analyses and myeloperoxidase activity) similar to those of celiac patients. In both muscle/serosa and mucosa layers, the levels of anandamide, 2-AG, and PEA peaked 3 days after treatment and returned to basal levels at remission, 7 days after treatment. Thus, intestinal endocannabinoid levels peak with atrophy and regress with remission in both celiac patients and methotrexate-treated rats. The latter might be used as a model to study the role of the endocannabinoid system in celiac disease. Topics: Adolescent; Adult; Amides; Animals; Arachidonic Acids; Atrophy; Cannabinoid Receptor Modulators; Case-Control Studies; Celiac Disease; Child; Diet, Protein-Restricted; Disease Models, Animal; Duodenum; Endocannabinoids; Ethanolamines; Female; Glycerides; Humans; Jejunum; Male; Methotrexate; Middle Aged; Palmitic Acids; Peroxidase; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Time Factors; Up-Regulation | 2007 |
Role and regulation of acylethanolamides in energy balance: focus on adipocytes and beta-cells.
The endocannabinoid, arachidonoylethanolamide (AEA), and the peroxisome proliferator-activated receptor (PPAR)-alpha ligand, oleylethanolamide (OEA) produce opposite effects on lipogenesis. The regulation of OEA and its anti-inflammatory congener, palmitoylethanolamide (PEA), in adipocytes and pancreatic beta-cells has not been investigated. We report here the results of studies on acylethanolamide regulation in these cells during obesity and hyperglycaemia, and provide an overview of acylethanolamide role in metabolic control. We analysed by liquid chromatography-mass spectrometry OEA and PEA levels in: 1) mouse 3T3F442A adipocytes during insulin-induced differentiation, 2) rat insulinoma RIN m5F beta-cells kept in 'low' or 'high' glucose, 3) adipose tissue and pancreas of mice with high fat diet-induced obesity (DIO), and 4) in visceral fat or blood of obese or type 2 diabetes (T2D) patients. In adipocytes, OEA levels remain unchanged during differentiation, whereas those of PEA decrease significantly, and are under the negative control of both leptin and PPAR-gamma. PEA is significantly downregulated in subcutaneous adipose tissue of DIO mice. In RIN m5F insulinoma beta-cells, OEA and PEA levels are inhibited by 'very high' glucose, this effect being enhanced by insulin, whereas in cells kept for 24 h in 'high' glucose, they are stimulated by both glucose and insulin. Elevated OEA and PEA levels are found in the blood of T2D patients. Reduced PEA levels in hypertrophic adipocytes might play a role in obesity-related pro-inflammatory states. In beta-cells and human blood, OEA and PEA are down- or up-regulated under conditions of transient or chronic hyperglycaemia, respectively. Topics: 3T3 Cells; Adipocytes; Adult; Aged; Amides; Animals; Arachidonic Acids; Diabetes Mellitus, Type 2; Endocannabinoids; Energy Metabolism; Ethanolamines; Female; Humans; Insulin-Secreting Cells; Leptin; Male; Mice; Mice, Inbred C57BL; Middle Aged; Models, Biological; Obesity; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; PPAR gamma; Review Literature as Topic; Structure-Activity Relationship | 2007 |
URB602 inhibits monoacylglycerol lipase and selectively blocks 2-arachidonoylglycerol degradation in intact brain slices.
The N-aryl carbamate URB602 (biphenyl-3-ylcarbamic acid cyclohexyl ester) is an inhibitor of monoacylglycerol lipase (MGL), a serine hydrolase involved in the biological deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). Here, we investigated the mechanism by which URB602 inhibits purified recombinant rat MGL by using a combination of biochemical and structure-activity relationship (SAR) approaches. We found that URB602 weakly inhibits recombinant MGL (IC(50) = 223 +/- 63 microM) through a rapid and noncompetitive mechanism. Dialysis experiments and SAR analyses suggest that URB602 acts through a partially reversible mechanism rather than by irreversible carbamoylation of MGL. Finally, URB602 (100 microM) elevates 2-AG levels in hippocampal slice cultures without affecting levels of other endocannabinoid-related substances. Thus, URB602 may provide a useful tool by which to investigate the physiological roles of 2-AG and explore the potential interest of MGL as a therapeutic target. Topics: Amides; Animals; Arachidonic Acids; Biphenyl Compounds; Brain; Catalysis; Cerebellum; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; HeLa Cells; Hippocampus; Humans; Kinetics; Male; Monoacylglycerol Lipases; Organophosphonates; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; Recombinant Proteins; Structure-Activity Relationship; Transfection | 2007 |
Oxyhomologues of anandamide and related endolipids: chemoselective synthesis and biological activity.
The three amide oxyhomologues of the endolipids N-arachidonoylethanolamine (anandamide, AEA, 1a), N-oleoylethanolamine (OEA, 2a), and N-palmitoylethanolamine (PEA, 3a) have been prepared in a chemoselective way, capitalizing on the easy availability of O-[2-(triisopropylsilyoxy)ethyl]hydroxylamine (6) and the surprising complementary selectivity observed in the acylation of N-[2-(tert-butyldiphenylsilyloxy)ethyl]hydroxylamine (7) with the PPAA and the DCC/HOBT protocols. Reversal of the cannabinoid CB(1)/CB(2) receptor affinity ratio was observed for the first time in a derivative of anandamide (the O-alkyl-N-acyl hydroxylamine 1b), while the other oxyhomologues (1c and 1d) showed only marginal cannabimimetic activity. Compounds with unsaturated acyl chains generally retained vanilloid activity and showed an increased stability toward FAAH compared to their corresponding ethanolamides. Taken together, these observation show that oxyhomologation has a pronounced effect on both the pharmacodynamic and the pharmacokinetic properties of endogenous ethanolamides, suggesting a general relevance of this maneuver for the modification of amide pharmacophores. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Cell Line; Chlorocebus aethiops; Endocannabinoids; Ethanolamines; Humans; Hydrolysis; Hydroxylamines; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Structure-Activity Relationship; TRPV Cation Channels | 2006 |
Diurnal variation of arachidonoylethanolamine, palmitoylethanolamide and oleoylethanolamide in the brain of the rat.
The diurnal variations of the endocannabinoid arachidonoylethanolamine (anandamide, ANA) as well as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were detected and quantified in cerebrospinal fluid (CSF), pons, hippocampus, and hypothalamus in the rat over 24 h using HPLC/MS. In CSF, the 3 compounds presented an increase in their concentration during the lights-on period and a remarkable decrease in their values during the lights-off period. In the pons, ANA, PEA and OEA showed the maximum values during the dark phase. On the other hand, we found that in the hippocampus, ANA increased its concentration during the lights-off period and PEA showed the highest peak at the beginning of the same period. OEA concentration showed no diurnal variations in the hippocampus. Finally, in the hypothalamus, ANA rose during the lights-on period whereas PEA and OEA presented the highest concentration at the end of the lights-off period. We postulate that all compounds are likely to be accumulated in parenchyma during the lights-off period (when animal is awake) and then, released into the CSF in order to reach target regions in turn to modulate diverse behaviors, such as feeding and sleep. Topics: Amides; Animals; Arachidonic Acids; Brain Chemistry; Chromatography, High Pressure Liquid; Circadian Rhythm; Endocannabinoids; Ethanolamines; Hippocampus; Hypothalamus; Male; Mass Spectrometry; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Pons; Rats; Rats, Sprague-Dawley | 2006 |
Changes in endocannabinoid and palmitoylethanolamide levels in eye tissues of patients with diabetic retinopathy and age-related macular degeneration.
Cannabinoid receptors and the endocannabinoids (anandamide (N-arachidonoylethanolamine--AEA) and 2-arachidonoylglycerol (2-AG)), as well as the AEA congener, palmitoylethanolamide (PEA), are involved in ocular physiology. We measured endocannabinoid and PEA levels by isotope-dilution liquid chromatography-mass spectrometric analysis in post-mortem eye tissues of patients with diabetic retinopathy (DR) or age-related macular degeneration (AMD). In eyes with DR, significantly enhanced levels of AEA were found in the retina ( approximately 1.8-fold), ciliary body ( approximately 1.5-fold) and, to a lesser extent, cornea ( approximately 1.3-fold). Surprisingly, 2-AG levels were significantly higher ( approximately 3-fold) only in the iris, whereas PEA levels only slightly increased ( approximately 1.3-fold) in the ciliary body. In eyes with AMD, significantly enhanced levels of AEA were found in the choroid ( approximately 1.3-fold), ciliary body ( approximately 1.4-fold) and cornea ( approximately 1.4-fold), whereas in the retina only a trend towards an increase ( approximately 1.5-fold) was observed. The tissue- and disease-selective nature of the changes observed suggests that the compounds analyzed here may play different roles in the control of eye function under different pathological conditions. Topics: Amides; Arachidonic Acids; Cannabinoid Receptor Modulators; Diabetic Retinopathy; Endocannabinoids; Ethanolamines; Eye; Glycerides; Humans; Macular Degeneration; Palmitic Acids; Polyunsaturated Alkamides; Up-Regulation | 2006 |
The postmortal accumulation of brain N-arachidonylethanolamine (anandamide) is dependent upon fatty acid amide hydrolase activity.
N-arachidonylethanolamine (AEA) accumulates during brain injury and postmortem. Because fatty acid amide hydrolase (FAAH) regulates brain AEA content, the purpose of this study was to determine its role in the postmortal accumulation of AEA using FAAH null mice. As expected, AEA content in immediately frozen brain tissue was significantly greater in FAAH-deficient (FAAH-/-) than in wild-type mice. However, AEA content was significantly lower in brains from FAAH-/- mice at 5 and 24 h postmortem. Similarly, wild-type mice treated in vivo with a FAAH inhibitor (URB532) had significantly lower brain AEA content 24 h postmortem compared with controls. These data indicate that FAAH contributes significantly to the postmortal accumulation of AEA. In contrast, the accumulations of two other N-acylethanolamines, N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA), were not reduced at 24 h postmortem in either the FAAH-/- mice or mice treated with URB532. FAAH-/- mice accumulated significantly less ethanolamine at 24 h postmortem compared with wild-type mice, suggesting that FAAH activity plays a role in the accumulation of ethanolamine postmortem. These data demonstrate that FAAH activity differentially affects AEA and OEA/PEA contents postmortem and suggest that AEA formation specifically occurs via an ethanolamine-dependent route postmortem. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Brain; Endocannabinoids; Ethanolamine; Ethanolamines; Female; Hydrolysis; Lipid Metabolism; Male; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Transgenic; Oleic Acids; Palmitic Acids; Phosphatidylethanolamines; Pisum sativum; Polyunsaturated Alkamides; Postmortem Changes; Time Factors | 2005 |
Effects of saturated long-chain N-acylethanolamines on voltage-dependent Ca2+ fluxes in rabbit T-tubule membranes.
The effects of saturated long-chain (C: 16-22) N-acylethanolamines and a series of saturated fatty acids with the same length of carbon chains were investigated on depolarization-induced (45)Ca(2+) fluxes mediated by voltage-dependent Ca(2+) channels in transverse tubule membrane vesicles from rabbit skeletal muscle. Vesicles were loaded with (45)Ca(2+) and membrane potentials were generated by establishing potassium gradients across the vesicle using the ionophore valinomycin. Arachidonoylethanolamide and docosaenoylethanolamide but not palmitoylethanolamide and stearoylethanolamide (all 10 microM) caused a significant inhibition of depolarization-induced (45)Ca(2+) fluxes and specific binding of [(3)H]Isradipine to transverse tubule membranes. On the other hand, saturated fatty acids including palmitic, stearic, arachidic, and docosanoic acids (all 10 microM) were ineffective in functional and radioligand binding experiments. Additional experiments using endocannabinoid metabolites suggested that whereas ethanolamine and arachidic acids were ineffective, arachidonoylethanolamide inhibited Ca(2+) effluxes and specific binding of [(3)H]Isradipine. Further studies indicated that only those fatty acids containing ethanolamine as a head group and having a chain length of more than 18 carbons were effective in inhibiting depolarization-induced Ca(2+) effluxes and specific binding of [(3)H]Isradipine. In conclusion, results indicate that depending on the chain length and the head group of fatty acid, N-acylethanolamines have differential effects on the function of voltage-dependent Ca(2+) channels and on the specific binding of [(3)H]Isradipine in skeletal muscle membranes. Topics: Amides; Animals; Arachidonic Acids; Calcium; Calcium Channel Blockers; Calcium Channels; Carbon; Cell Membrane; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamines; Fatty Acids; Ion Channel Gating; Ionophores; Isradipine; Kidney Tubules; Membrane Potentials; Muscle, Skeletal; Palmitic Acids; Polyunsaturated Alkamides; Potassium; Protein Binding; Protein Kinase Inhibitors; Rabbits; Stearic Acids; Valinomycin | 2005 |
Finding of endocannabinoids in human eye tissues: implications for glaucoma.
Cannabinoid CB(1) receptors are involved in ocular physiology and may regulate intraocular pressure (IOP). However, endocannabinoid levels in human ocular tissues of cornea, iris, ciliary body, retina, and choroid from normal and glaucomatous donors have not been investigated. Anandamide (N-arachidonoylethanolamine; AEA), 2-arachidonoylglycerol (2-AG), and the anandamide congener, palmitoylethanolamide (PEA), were detected in all the human tissues examined. In eyes from patients with glaucoma, significantly decreased 2-AG and PEA levels were detected in the ciliary body, an important tissue in the regulation of IOP. The findings suggest that these endogenous compounds may have a role in this disease, particularly with respect to regulation of IOP. Topics: Aged; Amides; Arachidonic Acids; Cannabinoid Receptor Modulators; Ciliary Body; Endocannabinoids; Ethanolamines; Eye; Glaucoma; Glycerides; Humans; Middle Aged; Organ Specificity; Palmitic Acids; Polyunsaturated Alkamides | 2005 |
Accumulation of anandamide: evidence for cellular diversity.
The endocannabinoid N-arachidonylethanolamine (AEA) is accumulated by many cell types, but the mechanisms are unknown. Data from several laboratories are consistent with the hypothesis that the accumulation of AEA occurs via the action of a transmembrane carrier that binds and transports AEA. However, other data suggest that AEA is sufficiently lipophilic to transverse plasma membranes by passive diffusion and will accumulate if it is catabolized intracellularly. The controversy is muddied by the use of different cellular models and assays, all of which are assumed to be studying the same phenomena. The purpose of the studies reported herein was: first, to compare AEA accumulation and accumulation inhibitors in cerebellar granule neurons with a glioma cell line; and, second, to compare the neuronal accumulation of AEA with a closely related analog, N-palmitoylethanolamine (PEA). We have found that the accumulation of AEA by neurons and C6 glioma exhibits different affinity for AEA and inhibitor profiles. In addition, we find that the accumulation of AEA and PEA by neurons differs in the amount accumulated and in heterologous inhibition. These studies add to the evidence that the neuronal accumulation of AEA uniquely requires more than passive diffusion and fatty acid amide-mediated catabolism of intracellular AEA. Topics: Amides; Animals; Animals, Newborn; Arachidonic Acids; Binding, Competitive; Biological Transport; Cell Line, Tumor; Cells, Cultured; Cerebellum; Endocannabinoids; Ethanolamines; Neurons; Palmitic Acids; Polyunsaturated Alkamides; Rats | 2005 |
Endogenous cannabinoid receptor agonists inhibit neurogenic inflammations in guinea pig airways.
Although neurogenic inflammation via the activation of C fibers in the airway must have an important role in the pathogenesis of asthma, their regulatory mechanism remains uncertain.. The pharmacological profiles of endogenous cannabinoid receptor agonists on the activation of C fibers in airway tissues were investigated and the mechanisms how cannabinoids regulate airway inflammatory reactions were clarified.. The effects of endogenous cannabinoid receptor agonists on electrical field stimulation-induced bronchial smooth muscle contraction, capsaicin-induced bronchoconstriction and capsaicin-induced substance P release in guinea pig airway tissues were investigated. The influences of cannabinoid receptor antagonists and K+ channel blockers to the effects of cannabinoid receptor agonists on these respiratory reactions were examined.. Both endogenous cannabinoid receptor agonists, anandamide and palmitoylethanolamide, inhibited electrical field stimulation-induced guinea pig bronchial smooth muscle contraction, but not neurokinin A-induced contraction. A cannabinoid CB2 antagonist, SR 144528, reduced the inhibitory effect of endogenous agonists, but not a cannabinoid CB1 antagonist, SR 141716A. Inhibitory effects of agonists were also reduced by the pretreatment of large conductance Ca2+ -activated K+ channel (maxi-K+ channel) blockers, iberiotoxin and charybdotoxin, but not by other K+ channel blockers, dendrotoxin or glibenclamide. Anandamide and palmitoylethanolamide blocked the capsaicin-induced release of substance P-like immunoreactivity from guinea pig airway tissues. Additionally, intravenous injection of palmitoylethanolamide dose-dependently inhibited capsaicin-induced guinea pig bronchoconstriction, but not neurokinin A-induced reaction. However, anandamide did not reduce capsaicin-induced guinea pig bronchoconstriction.. These findings suggest that endogenous cannabinoid receptor agonists inhibit the activation of C fibers via cannabinoid CB2 receptors and maxi-K+ channels in guinea pig airways. Topics: Amides; Animals; Arachidonic Acids; Bronchi; Bronchoconstriction; Calcium Channel Blockers; Camphanes; Cannabinoid Receptor Agonists; Capsaicin; Electric Stimulation; Endocannabinoids; Ethanolamines; Guinea Pigs; Male; Muscle Contraction; Muscle, Smooth; Nerve Fibers, Unmyelinated; Neurogenic Inflammation; Organ Culture Techniques; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Potassium Channel Blockers; Pyrazoles; Receptors, Cannabinoid; Rimonabant; Substance P | 2005 |
Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D.
Anandamide (an endocannabinoid) and other bioactive long-chain NAEs (N-acylethanolamines) are formed by direct release from N-acyl-PE (N-acyl-phosphatidylethanolamine) by a PLD (phospholipase D). However, the possible presence of a two-step pathway from N-acyl-PE has also been suggested previously, which comprises (1) the hydrolysis of N-acyl-PE to N-acyl-lysoPE by PLA1/PLA2 enzyme(s) and (2) the release of NAEs from N-acyllysoPE by lysoPLD (lysophospholipase D) enzyme(s). In the present study we report for the first time the characterization of enzymes responsible for this pathway. The PLA1/PLA2 activity for N-palmitoyl-PE was found in various rat tissues, with the highest activity in the stomach. This stomach enzyme was identified as group IB sPLA2 (secretory PLA2), and its product was determined as N-acyl-1-acyl-lysoPE. Recombinant group IB, IIA and V of sPLA2s were also active with N-palmitoyl-PE, whereas group X sPLA2 and cytosolic PLA2a were inactive. In addition, we found wide distribution of lysoPLD activity generating N-palmitoylethanolamine from N-palmitoyl-lysoPE in rat tissues, with higher activities in the brain and testis. Based on several lines of enzymological evidence, the lysoPLD enzyme could be distinct from the known N-acyl-PE-hydrolysing PLD. sPLA2-IB dose dependently enhanced the production of N-palmitoylethanolamine from N-palmitoyl-PE in the brain homogenate showing the lysoPLD activity. N-Arachidonoyl-PE and N-arachidonoyl-lysoPE as anandamide precursors were also good substrates of sPLA2-IB and the lysoPLD respectively. These results suggest that the sequential actions of PLA2 and lysoPLD may constitute another biosynthetic pathway for NAEs, including anandamide. Topics: Amides; Animals; Arachidonic Acids; Brain; Cell Line; Endocannabinoids; Ethanolamines; Group IB Phospholipases A2; Humans; Hydrolysis; Isoenzymes; Kidney; Male; Organ Specificity; Palmitic Acids; Phosphatidylethanolamines; Phospholipases A; Phospholipases A1; Phospholipases A2; Phosphoric Diester Hydrolases; Polyunsaturated Alkamides; Rats; Rats, Wistar; Stomach; Substrate Specificity | 2004 |
N-Morpholino- and N-diethyl-analogues of palmitoylethanolamide increase the sensitivity of transfected human vanilloid receptors to activation by anandamide without affecting fatty acid amidohydrolase activity.
The abilities of 19 analogues of palmitoylethanolamide and two analogues of oleoylethanolamide to affect the Ca(2+) influx into human embryonic kidney cells expressing the human vanilloid receptor (hVR1-HEK293 cells) in response to anandamide (AEA) have been investigated using a FLIPR assay and a bovine serum albumin-containing assay medium. Only palmitoylethanolamide produced any effect in the absence of AEA. The ability of palmitoylethanolamide to potentiate the response to AEA was retained when the N-CH(2)CH(2)OH group was replaced by N-CH(2)CH(2)Cl,whereas replacement with N-alkyl substituents [from -H up to -(CH(2))(12)CH(3)] resulted either in a reduction or in a complete loss of this activity. The tertiary amide N-(CH(2)CH(3))(2) (19) and N-morpholino (20) analogues of palmitoylethanolamide potentiated the response to 1 microM AEA to a greater degree than the parent compound, whereas the N-(CH(3))(2) analogue was inactive. 19 and 20 produced leftward shifts in the dose-response curve for AEA activation of Ca(2+) influx into hVR1-HEK293 cells. EC(50) values for AEA to produce Ca(2+) influx into hVR1-HEK293 cells were 1.1, 1.1, 0.54 and 0.36 microM in the presence of 0, 1, 3 and 10 microM 19, respectively. The corresponding values for 20 were 1.5, 1.3, 0.77 and 0.17 microM, respectively. The compounds did not affect the dose-response curves to capsaicin. The ability of oleoylethanolamide to potentiate AEA is retained by the N-CH(2)CH(3) and N-CH(CH(3))(2) analogues (22 and 23, respectively). 22 and 23 produced a small ( approximately 25%) inhibition of the binding of [(3)H]-CP55,940 and [(3)H]-WIN 55,212-2 to CB(1) and CB(2) receptors, respectively, expressed in CHO cells. The compounds inhibited the metabolism of 2 microM [(3)H]-AEA by rat brain fatty acid amidohydrolase with IC(50) values of 5.6 and 11 microM, respectively. In contrast, 19 and 20 were without effect on either binding to CB receptors or fatty acid amidohydrolase activity. Minor reductions in the accumulation of 10 microM [(3)H]-AEA into C6 glioma cells were seen at 10 microM concentrations of 19 and 20. It is concluded that 19 and 20 selectively enhance AEA effects upon VR1 receptors without potentially confounding effects upon CB receptors or fatty acid amidohydrolase activity. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Brain Neoplasms; Calcium Channel Blockers; Capsaicin; Endocannabinoids; Ethanolamines; Glioma; Humans; In Vitro Techniques; Kidney; Morpholines; Palmitic Acids; Polyunsaturated Alkamides; Radioligand Assay; Rats; Receptor, Cannabinoid, CB1; Receptors, Drug; Transfection; Tumor Cells, Cultured | 2003 |
Effects of cannabinoid receptor agonists on immunologically induced histamine release from rat peritoneal mast cells.
Immunologic activation of mast cells through the cross-linking of high affinity IgE receptors results in the release of inflammatory mediators which are important in the pathogenesis of allergic reactions. Early studies investigating the effects of palmitoylethanolamide on animal models of inflammation and on rat mast cells led to the hypothesis that endogenous cannabinoids might act as local autacoids which suppressed inflammation by reducing the activation of mast cells. However, more recent studies produced contradicting results. In order to evaluate if cannabinoid receptors are present in mast cells, we studied the effects of endocannabinoids (anandamide and palmitoylethanolamide) and synthetic cannabimimetics (CP 55,940, WIN 55,212-2 and HU-210) on histamine release from rat peritoneal mast cells. When incubated with mast cells alone, only anandamide could induce significant level of histamine release at concentrations higher than 10(-6) M. When mast cells were activated with anti-IgE, the histamine release induced was not affected by anandamide, palmitoylethanolamide and CP 55,940. In contrast, both WIN 55,212-2 and HU-210 enhanced anti-IgE-induced histamine release at 10(-5) M and preincubation did not increase the potency. The histamine releasing action of anandamide and the enhancing effects of WIN 55,212-2 and HU-210 on anti-IgE-induced histamine release were not reduced by the cannabinoid receptor antagonists, AM 281 and AM 630. In conclusion, the present study does not support the hypothesis that cannabinoids suppress mast cell activation. Instead, some of the cannabinoid receptor-directed ligands tested enhanced mast cell activation. However, the high concentrations required and the failure of cannabinoid receptor antagonists to reverse such effects also question the existence of functional cannabinoid receptors in mast cells. Topics: Adjuvants, Immunologic; Amides; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antibodies, Anti-Idiotypic; Arachidonic Acids; Benzoxazines; Cannabinoid Receptor Modulators; Dose-Response Relationship, Drug; Dronabinol; Drug Synergism; Endocannabinoids; Ethanolamines; Histamine Release; Immunoglobulin E; Male; Mast Cells; Morpholines; Naphthalenes; Ovalbumin; Palmitic Acids; Peritoneal Cavity; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Receptors, Drug | 2003 |
Modifications of the ethanolamine head in N-palmitoylethanolamine: synthesis and evaluation of new agents interfering with the metabolism of anandamide.
The endogenous fatty acid amide anandamide (AEA) has, as a result of its actions on cannabinoid and vanilloid receptors, a number of important pharmacological properties including effects on nociception, memory processes, spasticity, and cell proliferation. Inhibition of the metabolism of AEA, catalyzed by fatty acid amide hydrolase (FAAH), potentiates the actions of AEA in vivo and therefore may be a useful target for drug development. In the present study, we have investigated whether substitution of the headgroup of the endogenous alternative FAAH substrate palmitoylethanolamide (PEA) can result in the identification of novel compounds preventing AEA metabolism. Thirty-seven derivatives of PEA were synthesized, with the C16 long chain of palmitic acid kept intact, and comprising 20 alkylated, 12 aromatic, and 4 halogenated amides. The ability of the PEA derivatives to inhibit FAAH-catalyzed hydrolysis of [(3)H]AEA was investigated using rat brain homogenates as a source of FAAH. Inhibition curves were analyzed to determine the potency of the inhibitable fraction (pI(50) values) and the maximal attained inhibition for the compound, given that solubility in an aqueous environment is a major issue for these compounds. In the alkylamide family, palmitoylethylamide and palmitoylallylamide were inhibitors of AEA metabolism with pI(50) values of 5.45 and 5.47, respectively. Halogenated derivatives (Cl and Br) exhibit pI(50) values of approximately 5.5 but rather low percentages of maximal inhibition. The -OH group of the ethyl head chain of N-palmitoylethanolamine was not necessary for interaction with FAAH. Amides containing aromatic moieties were less potent inhibitors of AEA metabolism. Compounds containing amide and ester bonds, 13 and 37, showed pI(50) values of 4.99 and 5.08, respectively. None of the compounds showed obvious affinity for CB(1) or CB(2) receptors expressed on Chinese hamster ovary (CHO) cells. It is concluded that although none of the compounds were dramatically more potent than PEA itself at reducing the metabolism of AEA, the lack of effect of the compounds at CB(1) and CB(2) receptors makes them useful templates for development of possible therapeutic FAAH inhibitors. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Brain; Cannabinoids; CHO Cells; Cricetinae; Endocannabinoids; Ethanolamines; Humans; In Vitro Techniques; Palmitic Acids; Polyunsaturated Alkamides; Radioligand Assay; Rats; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Structure-Activity Relationship | 2003 |
Inhibitory effect of anandamide on resiniferatoxin-induced sensory neuropeptide release in vivo and neuropathic hyperalgesia in the rat.
Anandamide (AEA) is an endogenous cannabinoid ligand acting predominantly on the cannabinoid 1 (CB(1)) receptor, but it is also an agonist on the capsaicin VR(1)/TRPV(1) receptor. In the present study we examined the effects of AEA and the naturally occurring cannabinoid 2 (CB(2)) receptor agonist palmitylethanolamide (PEA) on basal and resiniferatoxin (RTX)-induced release of calcitonin gene-related peptide (CGRP) and somatostatin in vivo. Since these sensory neuropeptides play important role in the development of neuropathic hyperalgesia, the effect of AEA and PEA was also examined on mechanonociceptive threshold changes after partial ligation of the sciatic nerve. Neither AEA nor PEA affected basal plasma peptide concentrations, but both of them inhibited RTX-induced release. The inhibitory effect of AEA was prevented by the CB(1) receptor antagonist SR141716A. AEA abolished and PEA significantly decreased neuropathic mechanical hyperalgesia 7 days after unilateral sciatic nerve ligation, which was antagonized by SR141716A and the CB(2) receptor antagonist SR144528, respectively. Both SR141716A and SR144528 increased hyperalgesia, indicating that endogenous cannabinoids acting on CB(1) and peripheral CB(2)-like receptors play substantial role in neuropathic conditions to diminish hyperalgesia. AEA and PEA exert inhibitory effect on mechanonociceptive hyperalgesia and sensory neuropeptide release in vivo suggesting their potential therapeutical use to treat chronic neuropathic pain. Topics: Amides; Animals; Arachidonic Acids; Calcitonin Gene-Related Peptide; Camphanes; Cannabinoids; Diterpenes; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamines; Hyperalgesia; Injections, Intravenous; Male; Neuropeptides; Neurotoxins; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Rimonabant; Sciatic Nerve; Sciatic Neuropathy; Somatostatin | 2003 |
Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility.
Focal cerebral ischemia (FCI) induces rapid neuronal death in the ischemic core, which gradually expands toward the penumbra, partly as the result of a neuroinflammatory response. It is known that propagation of neuroinflammation involves microglial cells, the resident macrophages of the brain, which are highly motile when activated by specific signals. However, the signals that increase microglial cell motility in response to FCI remain mostly elusive. Here, we tested the hypothesis that endocannabinoids mediate neuroinflammation propagation by increasing microglial cell motility. We found that, in mouse cerebral cortex, FCI greatly increases palmitoylethanolamide (PEA), only moderately increases anandamide [arachidonylethanolamide (AEA)], and does not affect 2-arachidonoylglycerol levels. We also found that PEA potentiates AEA-induced microglial cell migration, without affecting other steps of microglial activation, such as proliferation, particle engulfment, and nitric oxide production. This potentiation of microglial cell migration by PEA involves reduction in cAMP levels. In line with this, we provide evidence that PEA acts through Gi/o-coupled receptors. Interestingly, these receptors engaged by PEA are pharmacologically distinct from CB1 and CB2 cannabinoid receptors, as well as from the WIN and abn-CBD (abnormal-cannabidiol) receptors, two recently identified cannabinoid receptors. Our results show that PEA and AEA increase after FCI and synergistically enhance microglial cell motility. Because such a response could participate in the propagation of the FCI-induced neuroinflammation within the CNS, and because PEA is likely to act through its own receptor, a better understanding of the receptor engaged by PEA may help guide the search for improved therapies against neuroinflammation. Topics: Amides; Animals; Arachidonic Acids; Brain Ischemia; Cannabinoid Receptor Modulators; Cannabinoids; Cell Division; Cell Line; Cell Movement; Cerebral Cortex; Endocannabinoids; Ethanolamines; Fatty Acids, Unsaturated; Glycerides; Heterotrimeric GTP-Binding Proteins; Mice; Microglia; Nitric Oxide; Palmitic Acids; Phagocytosis; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug | 2003 |
Release of fatty acid amides in a patient with hemispheric stroke: a microdialysis study.
Excitotoxic insults such as stroke may induce release of fatty acid ethanolamides (FAEs), contributing to the downstream events in the ischemic cascade. We therefore studied release of FAEs such as anandamide, palmitylethanolamide (PEA), and oleylethanolamide (OEA) in the brain of a patient suffering from malignant hemispheric infarction treated with hypothermia.. A patient with life-threatening hemispheric stroke was treated with moderate hypothermia (33 degrees C) that was maintained for 3 days, followed by a 3-day rewarming period. Microdialysis was applied to measure glutamate, lactate, and glycerol by using a microdialysis analyzer. FAEs were measured by microdialysis coupled with high-performance liquid chromatography/mass spectrometry. Release of neuroprotective fatty amides occurred within the first day after ischemia and reached high concentrations for all 3 substances in tissue surrounding the primary ischemic lesion: anandamide up to 42 pmol/mL, PEA up to 120 pmol/mL, and OEA up to 242 pmol/mL. There was a significant correlation with elevation of lactate as early marker for the hypoxic insult.. This is the first report demonstrating release of FAEs in vivo during human stroke and may suggest contribution of the FAE signaling system to the pathophysiological events after ischemia. Topics: Aged; Amides; Arachidonic Acids; Brain; Brain Chemistry; Brain Ischemia; Endocannabinoids; Ethanolamines; Extracellular Space; Glutamic Acid; Glycerol; Hemiplegia; Humans; Hypothermia, Induced; Lactic Acid; Male; Microdialysis; Monitoring, Physiologic; Oleic Acid; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Sleep Stages; Stroke | 2002 |
Attenuation of nerve growth factor-induced visceral hyperalgesia via cannabinoid CB(1) and CB(2)-like receptors.
Cannabinoids have previously been shown to possess analgesic properties in a model of visceral hyperalgesia in which the neurotrophin, nerve growth factor (NGF), plays a pivotal role. The purpose of this study was to investigate the antihyperalgesic effects of two cannabinoids in NGF-evoked visceral hyperalgesia in order to test the hypothesis that endocannabinoids may modulate the NGF-driven elements of inflammatory hyperalgesia. Intra-vesical installation of NGF replicates many features of visceral hyperalgesia, including a bladder hyper-reflexia and increased expression of the immediate early gene c fos in the spinal cord. We investigated the action of anandamide and palmitoylethanolamide (PEA) on these parameters. Both anandamide (at a dose of 25 mg/kg) and PEA (at a dose of 2.5 mg/kg) attenuated the bladder hyper-reflexia induced by intra-vesical NGF. The use of cannabinoid CB1 receptor (SR141617A) and CB2 receptor (SR144528) antagonists suggested that the effect of anandamide was mediated by both CB1 and CB2 cannabinoid receptors whilst the action of PEA was via CB2 (or CB2-like) receptors only. Furthermore, anandamide (25 mg/kg) and PEA (2.5 mg/kg) reduced intra-vesical NGF-evoked spinal cord Fos expression at the appropriate level (L6) by 35 and 43%, respectively. However, neither CB1 nor CB2 receptor antagonists altered the action of anandamide. PEA-induced reduction in Fos expression was abrogated by SR144528. These data add to the growing evidence of a therapeutic potential for cannabinoids, and support the hypothesis that the endogenous cannabinoid system modulates the NGF-mediated components of inflammatory processes. Topics: Amides; Animals; Arachidonic Acids; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Endocannabinoids; Ethanolamines; Female; Hyperalgesia; Nerve Growth Factor; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Proto-Oncogene Proteins c-fos; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Reflex, Abnormal; Rimonabant; Spinal Cord; Urinary Bladder; Visceral Afferents | 2002 |
Endocannabinoids control spasticity in a multiple sclerosis model.
Spasticity is a complicating sign in multiple sclerosis that also develops in a model of chronic relapsing experimental autoimmune encephalomyelitis (CREAE) in mice. In areas associated with nerve damage, increased levels of the endocannabinoids, anandamide (arachidonoylethanolamide, AEA) and 2-arachidonoyl glycerol (2-AG), and of the AEA congener, palmitoylethanolamide (PEA), were detected here, whereas comparable levels of these compounds were found in normal and non-spastic CREAE mice. While exogenously administered endocannabinoids and PEA ameliorate spasticity, selective inhibitors of endocannabinoid re-uptake and hydrolysis-probably through the enhancement of endogenous levels of AEA, and, possibly, 2-arachidonoyl glycerol-significantly ameliorated spasticity to an extent comparable with that observed previously with potent cannabinoid receptor agonists. These studies provide definitive evidence for the tonic control of spasticity by the endocannabinoid system and open new horizons to therapy of multiple sclerosis, and other neuromuscular diseases, based on agents modulating endocannabinoid levels and action, which exhibit little psychotropic activity. Topics: Amides; Animals; Arachidonic Acids; Brain; Cannabinoid Receptor Modulators; Cannabinoids; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Endocannabinoids; Ethanolamines; Glycerides; Humans; Mice; Mice, Inbred Strains; Multiple Sclerosis; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Spasm; Spinal Cord | 2001 |
Gas chromatography-mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture.
Endocannabinoids are lipid mediators thought to modulate central and peripheral neural functions. We report here gas chromatography-electron impact mass spectrometry analysis of human brain, showing that lipid extracts contain anandamide and 2-arachidonoylglycerol (2-AG), the most active endocannabinoids known to date. Human brain also contained the endocannabinoid-like compounds N-oleoylethanolamine, N-palmitoylethanolamine and N-stearoylethanolamine. Anandamide and 2-AG (0.16 +/- 0.05 and 0.10 +/- 0.05 nmol/mg protein, respectively) represented 7.7% and 4.8% of total endocannabinoid-like compounds, respectively. N-Palmitoyethanolamine was the most abundant (50%), followed by N-oleoyl (23.6%) and N-stearoyl (13.9%) ethanolamines. A similar composition in endocannabinoid-like compounds was found in human neuroblastoma CHP100 and lymphoma U937 cells, and also in rat brain. Remarkably, human meningioma specimens showed an approximately six-fold smaller content of all N-acylethanolamines, but not of 2-AG, and a similar decrease was observed in a human glioblastoma. These ex vivo results fully support the purported roles of endocannabinoids in the nervous system. Topics: Amides; Animals; Arachidonic Acids; Brain Chemistry; Brain Neoplasms; Cannabinoid Receptor Modulators; Cannabinoids; Endocannabinoids; Ethanolamines; Gas Chromatography-Mass Spectrometry; Glioblastoma; Glycerides; Humans; Lymphoma; Meningioma; Neuroblastoma; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; Reference Values; Stearic Acids; Tumor Cells, Cultured; U937 Cells | 2001 |
Characterization of palmitoylethanolamide transport in mouse Neuro-2a neuroblastoma and rat RBL-2H3 basophilic leukaemia cells: comparison with anandamide.
The endogenous cannabinoid receptor agonist anandamide (AEA) and the related compound palmitoylethanolamide (PEA) are inactivated by transport into cells followed by metabolism by fatty acid amide hydrolase (FAAH). The cellular uptake of AEA has been characterized in detail, whereas less is known about the properties of the PEA uptake, in particular in neuronal cells. In the present study, the pharmacological and functional properties of PEA and AEA uptake have been investigated in mouse Neuro-2a neuroblastoma and, for comparison, in rat RBL-2H3 basophilic leukaemia cells. Saturable uptake of PEA and AEA into both cell lines were demonstrated with apparent K(M) values of 28 microM (PEA) and 10 microM (AEA) in Neuro-2a cells, and 30 microM (PEA) and 9.3 microM (AEA) in RBL-2H3 cells. Both PEA and AEA uptake showed temperature-dependence but only the AEA uptake was sensitive to treatment with Pronase and phenylmethylsulfonyl fluoride. The AEA uptake was inhibited by AM404, 2-arachidonoylglycerol (2-AG), R1- and S1-methanandamide, arachidonic acid and olvanil with similar potencies for the two cell types. PEA, up to a concentration of 100 microM, did not affect AEA uptake in either cell line. AEA, 2-AG, arachidonic acid, R1-methanandamide, (9)-THC, and cannabidiol inhibited PEA transport in both cell lines. The non-steroidal anti-inflammatory drug indomethacin inhibited the AEA uptake but had very weak effects on the uptake of PEA. From these data, it can be concluded that PEA is transported in to cells both by passive diffusion and by a facilitated transport that is pharmacologically distinguishable from AEA uptake. Topics: Amides; Animals; Arachidonic Acids; Brain Neoplasms; Cannabinoids; Cell Survival; Endocannabinoids; Ethanol; Ethanolamines; Kinetics; Leukemia, Basophilic, Acute; Mast Cells; Mice; Neuroblastoma; Palmitic Acids; Phenylmethylsulfonyl Fluoride; Polyunsaturated Alkamides; Pronase; Protease Inhibitors; Rats; Tumor Cells, Cultured | 2001 |
Receptor-independent effects of natural cannabinoids in rat peritoneal mast cells in vitro.
Cannabinoids can activate CB(1) and CB(2) receptors. Since a CB(2) mRNA has been described in rat peritoneal mast cells (RPMC), we investigated a series of cannabinoids and derivatives for their capacity to stimulate RPMC. Effects of natural cannabinoids Delta(9)-tetrahydrocannabinol (Delta(9)-THC), Delta(8)-THC, endocannabinoids (anandamide, palmitoylethanolamide) and related compounds (N-decanoyl-, N-lauroyl-, N-myristoyl-, N-stearoyl- and N-oleoyl-ethanolamines; N-palmitoyl derivatives (-butylamine, -cyclohexylamine, -isopropylamine); and N-palmitoyl, O-palmitoylethanolamine), and synthetic cannabinoids including WIN 55,212-2, SR141716A and SR144528 were assessed for their capacity to induce histamine release or prime RPMC stimulated by compound 48/80. Only Delta(9)-THC and Delta(8)-THC could induce non-lytic, energy- and concentration-dependent histamine releases from RPMC (respective EC(50) values: 23.5+/-1.2; 53.4+/-20.6 microM, and maxima: 71.2+/-5.5; 55.7+/-2.7% of the total RPMC histamine content). These were not blocked by CB(1) (SR141716A) or CB(2) (SR144528) antagonists, but reduced by pertussis toxin (100 ng/ml). Endocannabinoids and analogues did neither induce histamine secretion, nor prime secretion induced by compound 48/80 (0.2 microg/ml). Delta(9)-THC and Delta(8)-THC induced in vitro histamine secretion from RPMC through CB receptor-independent interactions, partly involving G(i/o) protein activation. Topics: Amides; Animals; Arachidonic Acids; Benzalkonium Compounds; Benzoxazines; Cannabinoid Receptor Modulators; Cannabinoids; Cells, Cultured; Dronabinol; Endocannabinoids; Ethanolamines; Histamine Release; Male; Mast Cells; Morpholines; Naphthalenes; p-Methoxy-N-methylphenethylamine; Palmitic Acids; Peritoneum; Polyunsaturated Alkamides; Rats; Rats, Wistar | 2001 |
Administration of endocannabinoids prevents a referred hyperalgesia associated with inflammation of the urinary bladder.
Referred hyperalgesia to a somatopically appropriate superficial site is a cardinal symptom of visceral inflammatory pain and has been demonstrated after turpentine-induced urinary bladder inflammation in the rat. The authors examined the effect of the endocannabinoids anandamide and palmitoylethanolamide on the referred hyperalgesia associated with this model.. After measurement of baseline limb withdrawal latencies to a noxious heat stimulus, the bladders of 50 female Wistar rats were inflamed by intravesical administration of 0.5 ml 50% turpentine. Ten or 25 mg/kg of anandamide or palmitoylethanolamide or vehicle were administered immediately before introduction of turpentine. Antagonists to both the cannabinoid CB1 and CB2 receptors were coadministered with the higher dose of endocannabinoids. Latencies were recorded 2, 4, 6, 8, and 24 h after removal of turpentine. The difference between forelimb and hind limb withdrawal latencies was plotted against time, and areas under these curves were compared.. Inflammation of the urinary bladder was associated with a relative thermal hyperalgesia referred to the hind limb. Anandamide and palmitoylethanolamide attenuated this referred hyperalgesia at doses of 10 and 25 mg/kg. The CB1 receptor antagonist SR141716A reduced the antihyperalgesic effect of anandamide, but the CB2 antagonist SR144528 did not. Coadministration of SR141716A with palmitoylethanolamide did not affect the antihyperalgesic effect but was reduced by SR144528.. Anandamide (via CB1 receptors) and palmitoylethanolamide (putatively via CB2 receptors) attenuated a referred hyperalgesia in a dose-dependent fashion. CB1 and CB2 receptors are strategically situated to influence the nerve growth factor-driven referred hyperalgesia associated with inflammation of the urinary bladder. These data implicate cannabinoids as a novel treatment for vesical pain. Topics: Adjuvants, Immunologic; Amides; Analgesics; Animals; Arachidonic Acids; Area Under Curve; Cannabinoid Receptor Modulators; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamines; Female; Hyperalgesia; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Urinary Bladder Diseases | 2001 |
Antinociceptive activity of the endogenous fatty acid amide, palmitylethanolamide.
The endogenous fatty acid ethanolamide, palmitylethanolamide, alleviated, in a dose-dependent manner, pain behaviors elicited in mice by injections of formalin (5%, intraplantar), acetic acid (0.6%, 0.5 ml per animal, intraperitoneal, i.p.), kaolin (2.5 mg per animal, i.p.), and magnesium sulfate (120 mg per kg, i.p.). The antinociceptive effects of palmitylethanolamide were prevented by the cannabinoid CB2 receptor antagonist SR144528 [N-([1s]-endo-1.3.3-trimethylbicyclo[2.3.1]heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide], not by the cannabinoid CB1 receptor antagonist SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide x HCl]. By contrast, palmitylethanolamide had no effect on capsaicin-evoked pain behavior or thermal nociception. The endogenous cannabinoid, anandamide (arachidonylethanolamide), alleviated nociception in all tests (formalin, acetic acid, kaolin, magnesium sulfate, capsaicin and hot plate). These effects were prevented by the cannabinoid CB1 receptor antagonist SR141716A, not the cannabinoid CB2 receptor antagonist SR141716A. Additional fatty acid ethanolamides (oleylethanolamide, myristylethanolamide, palmitoleylethanolamide, palmitelaidylethanolamide) had little or no effect on formalin-evoked pain behavior, and were not investigated in other pain models. These results support the hypothesis that endogenous palmitylethanolamide participates in the intrinsic control of pain initiation. They also suggest that the putative receptor site activated by palmitylethanolamide may provide a novel target for peripherally acting analgesic drugs. Topics: Amides; Analgesics; Analysis of Variance; Animals; Arachidonic Acids; Calcium Channel Blockers; Camphanes; Dose-Response Relationship, Drug; Drug Synergism; Endocannabinoids; Ethanolamines; Formaldehyde; Male; Mice; Pain; Palmitic Acids; Polyunsaturated Alkamides; Pyrazoles | 2001 |
Effects of the cannabimimetic fatty acid derivatives 2-arachidonoylglycerol, anandamide, palmitoylethanolamide and methanandamide upon IgE-dependent antigen-induced beta-hexosaminidase, serotonin and TNF alpha release from rat RBL-2H3 basophilic leukaemic
There are conflicting reports in the literature as to whether palmitoylethanolamide affects the function of mast cell-related cell lines in vitro, in contrast to the well-documented effects of this compound upon mast cell function in vivo. In the present study, we have reinvestigated the effects of palmitoylethanolamide upon antigen-induced release of [3H]serotonin and beta-hexosaminidase from rat basophilic leukemia RBL-2H3 cells and compared these effects with those of 2-arachidonoylglycerol, anandamide and R1-methanandamide. RBL-2H3 cells were sensitized with a monoclonal anti-DNP IgE, after which they were stimulated with antigen (DNP-HSA). Palmitoylethanolamide produced a small, but significant reduction in antigen-stimulated [3H]serotonin release at high concentrations, whereas anandamide was without effect. In contrast, 2-arachidonoylglycerol and methanandamide increased the antigen-stimulated release of both [3H]serotonin and beta-hexosaminidase. It is concluded that in RBL-2H3 cells, these cannabimimetic fatty acid derivatives do not have potent stabilizing effects upon antigen-induced degranulation. Topics: Adjuvants, Immunologic; Amides; Animals; Arachidonic Acids; beta-N-Acetylhexosaminidases; Endocannabinoids; Enzyme Induction; Ethanolamines; Glycerides; Immunoglobulin E; Inflammation Mediators; Leukemia; Ligands; Mast Cells; Palmitic Acids; Polyunsaturated Alkamides; Rats; Serotonin; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha | 2001 |
Palmitoylethanolamide inhibits the expression of fatty acid amide hydrolase and enhances the anti-proliferative effect of anandamide in human breast cancer cells.
Palmitoylethanolamide (PEA) has been shown to act in synergy with anandamide (arachidonoylethanolamide; AEA), an endogenous agonist of cannabinoid receptor type 1 (CB(1)). This synergistic effect was reduced by the CB(2) cannabinoid receptor antagonist SR144528, although PEA does not activate either CB(1) or CB(2) receptors. Here we show that PEA potently enhances the anti-proliferative effects of AEA on human breast cancer cells (HBCCs), in part by inhibiting the expression of fatty acid amide hydrolase (FAAH), the major enzyme catalysing AEA degradation. PEA (1-10 microM) enhanced in a dose-related manner the inhibitory effect of AEA on both basal and nerve growth factor (NGF)-induced HBCC proliferation, without inducing any cytostatic effect by itself. PEA (5 microM) decreased the IC(50) values for AEA inhibitory effects by 3-6-fold. This effect was not blocked by the CB(2) receptor antagonist SR144528, and was not mimicked by a selective agonist of CB(2) receptors. PEA enhanced AEA-evoked inhibition of the expression of NGF Trk receptors, which underlies the anti-proliferative effect of the endocannabinoid on NGF-stimulated MCF-7 cells. The effect of PEA was due in part to inhibition of AEA degradation, since treatment of MCF-7 cells with 5 microM PEA caused a approximately 30-40% down-regulation of FAAH expression and activity. However, PEA also enhanced the cytostatic effect of the cannabinoid receptor agonist HU-210, although less potently than with AEA. PEA did not modify the affinity of ligands for CB(1) or CB(2) receptors, and neither did it alter the CB(1)/CB(2)-mediated inhibitory effect of AEA on adenylate cyclase type V, nor the expression of CB(1) and CB(2) receptors in MCF-7 cells. We suggest that long-term PEA treatment of cells may positively affect the pharmacological activity of AEA, in part by inhibiting FAAH expression. Topics: Amides; Amidohydrolases; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Arachidonic Acids; Blotting, Western; Breast Neoplasms; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Capsaicin; Cell Division; Colforsin; COS Cells; Cyclic AMP; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamines; Glycerides; Humans; Hydrolysis; Inhibitory Concentration 50; Palmitic Acids; Polyunsaturated Alkamides; Protein Binding; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Reverse Transcriptase Polymerase Chain Reaction; Transfection; Tumor Cells, Cultured | 2001 |
Effects of homologues and analogues of palmitoylethanolamide upon the inactivation of the endocannabinoid anandamide.
1. The ability of a series of homologues and analogues of palmitoylethanolamide to inhibit the uptake and fatty acid amidohydrolase (FAAH)-catalysed hydrolysis of [(3)H]-anandamide ([(3)H]-AEA) has been investigated. 2. Palmitoylethanolamide and homologues with chain lengths from 12 - 18 carbon atoms inhibited rat brain [(3)H]-AEA metabolism with pI(50) values of approximately 5. Homologues with chain lengths < or = eight carbon atoms gave < 20% inhibition at 100 microM. 3. R-palmitoyl-(2-methyl)ethanolamide, palmitoylisopropylamide and oleoylethanolamide inhibited [(3)H]-AEA metabolism with pI(50) values of 5.39 (competitive inhibition), 4.89 (mixed type inhibition) and 5.33 (mixed type inhibition), respectively. 4. With the exception of oleoylethanolamide, the compounds did not produce dramatic inhibition of [(3)H]-WIN 55,212-2 binding to human CB(2) receptors expressed on CHO cells. Palmitoylethanolamide, palmitoylisopropylamide and R-palmitoyl-(2-methyl)ethanolamide had modest effects upon [(3)H]-CP 55,940 binding to human CB(1) receptors expressed on CHO cells. 5. Most of the compounds had little effect upon the uptake of [(3)H]-AEA into C6 and/or RBL-2H3 cells. However, palmitoylcyclohexamide (100 microM) and palmitoylisopropylamide (30 and 100 microM) produced more inhibition of [(3)H]-AEA uptake than expected to result from inhibition of [(3)H]-AEA metabolism alone. 6. In intact C6 cells, palmitoylisopropylamide and oleoylethanolamide inhibited formation of [(3)H]-ethanolamine from [(3)H]-AEA to a similar extent as AM404, whereas palmitoylethanolamide, palmitoylcyclohexamide and R-palmitoyl-(2-methyl)ethanolamide were less effective. 7. These data provide useful information upon the ability of palmitoylethanolamide analogues to act as 'entourage' compounds. Palmitoylisopropylamide may prove useful as a template for design of compounds that reduce the cellular accumulation and metabolism of AEA without affecting either CB(1) or CB(2) receptors. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Binding, Competitive; Biological Transport; Brain; Cannabinoid Receptor Modulators; Cell Membrane; CHO Cells; Cricetinae; Endocannabinoids; Ethanolamine; Ethanolamines; Humans; Hydrolysis; Palmitic Acids; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Reproducibility of Results; Tumor Cells, Cultured | 2001 |
Palmitoylethanolamide enhances anandamide stimulation of human vanilloid VR1 receptors.
In human embryonic kidney cells over-expressing the human vanilloid receptor type 1 (VR1), palmitoylethanolamide (PEA, 0.5-10 microM) enhanced the effect of arachidonoylethanolamide (AEA, 50 nM) on the VR1-mediated increase of the intracellular Ca2+ concentration. PEA (5 microM) decreased the AEA half-maximal concentration for this effect from 0.44 to 0.22 microM. The PEA effect was not due to inhibition of AEA hydrolysis or adhesion to non-specific sites, since bovine serum albumin (0.01-0.25%) potently inhibited AEA activity, and PEA also enhanced the effect of low concentrations of the VR1 agonists resiniferatoxin and capsaicin. PEA (5 microM) enhanced the affinity of AEA for VR1 receptors as assessed in specific binding assays. These data suggest that PEA might be an endogenous enhancer of VR1-mediated AEA actions. Topics: Amides; Arachidonic Acids; Calcium; Capsaicin; Cell Line; Diterpenes; Drug Synergism; Endocannabinoids; Ethanolamines; Humans; Palmitic Acids; Polyunsaturated Alkamides; Receptors, Drug | 2001 |
Mechanisms of anandamide-induced vasorelaxation in rat isolated coronary arteries.
1. The cannabinoid arachidonyl ethanolamide (anandamide) caused concentration-dependent relaxation of 5-HT-precontracted, myograph-mounted, segments of rat left anterior descending coronary artery. 2. This relaxation was endothelium-independent, unaffected by the fatty acid amide hydrolase inhibitor, arachidonyl trifluoromethyl ketone (10 microM), and mimicked by the non-hydrolysable anandamide derivative, methanandamide. 3. Relaxations to anandamide were attenuated by the cannabinoid receptor antagonist, SR 141716A (3 microM), but unaffected by AM 251 (1 microM) and AM 630 (1 microM), more selective antagonists of cannabinoid CB(1) and CB(2) receptors respectively. Palmitoylethanolamide, a selective CB(2) receptor agonist, did not relax precontracted coronary arteries. 4. Anandamide relaxations were not affected by inhibition of sensory nerve transmission with capsaicin (10 microM) or blockade of vanilloid VR1 receptors with capsazepine (5 microM). Nevertheless capsaicin relaxed coronary arteries in a concentration-dependent and capsazepine-sensitive manner, confirming functional sensory nerves were present. In contrast, capsazepine and capsaicin did inhibit anandamide relaxations in methoxamine-precontracted rat small mesenteric arteries. 5. Relaxations to anandamide were inhibited by TEA (1 mM) or iberiotoxin (50 nM), blockers of large conductance, Ca(2+)-activated K(+) channels (BK(Ca)). Gap junction inhibition with 18alpha-glycyrrhetinic acid (100 microM) did not affect anandamide relaxations. 6. This study shows anandamide relaxes the rat coronary artery by a novel mechanism. Anandamide-induced relaxations do not involve the endothelium, degradation into active metabolites, or activation of cannabinoid CB(1) or CB(2) receptors, but may involve activation of BK(Ca). Vanilloid receptor activation also has no role in the effects of anandamide in coronary arteries, even though functional sensory nerves are present. Topics: Amides; Animals; Arachidonic Acids; Capsaicin; Coronary Vessels; Dose-Response Relationship, Drug; Endocannabinoids; Endothelium, Vascular; Ethanolamines; Gap Junctions; Glycyrrhetinic Acid; In Vitro Techniques; Indoles; Indomethacin; Male; Palmitic Acids; Peptides; Piperidines; Polyunsaturated Alkamides; Potassium Channel Blockers; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Serotonin; Tetraethylammonium; Vasodilation | 2001 |
The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1).
The endogenous cannabinoid anandamide was identified as an agonist for the recombinant human VR1 (hVR1) by screening a large array of bioactive substances using a FLIPR-based calcium assay. Further electrophysiological studies showed that anandamide (10 or 100 microM) and capsaicin (1 microM) produced similar inward currents in hVR1 transfected, but not in parental, HEK293 cells. These currents were abolished by capsazepine (1 microM). In the FLIPR anandamide and capsaicin were full agonists at hVR1, with pEC(50) values of 5. 94+/-0.06 (n=5) and 7.13+/-0.11 (n=8) respectively. The response to anandamide was inhibited by capsazepine (pK(B) of 7.40+/-0.02, n=6), but not by the cannabinoid receptor antagonists AM630 or AM281. Furthermore, pretreatment with capsaicin desensitized the anandamide-induced calcium response and vice versa. In conclusion, this study has demonstrated for the first time that anandamide acts as a full agonist at the human VR1. Topics: Amides; Arachidonic Acids; Binding, Competitive; Calcium; Calcium Channels; Cannabinoids; Capsaicin; Cell Line; Cloning, Molecular; Electrophysiology; Endocannabinoids; Ethanolamines; Humans; Hydrogen-Ion Concentration; Palmitic Acids; Patch-Clamp Techniques; Polyunsaturated Alkamides; Receptors, Drug; Recombinant Proteins; TRPV Cation Channels | 2000 |
Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells.
We examined the effect of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, on the intracellular free Ca(2+) concentrations in HL-60 cells that express the cannabinoid CB2 receptor. We found that 2-arachidonoylglycerol induces a rapid transient increase in intracellular free Ca(2+) concentrations in HL-60 cells. The response was affected by neither cyclooxygenase inhibitors nor lipoxygenase inhibitors, suggesting that arachidonic acid metabolites are not involved. Consistent with this notion, free arachidonic acid was devoid of any agonistic activity. Importantly, the Ca(2+) transient induced by 2-arachidonoylglycerol was blocked by pretreatment of the cells with SR144528, a CB2 receptor-specific antagonist, but not with SR141716A, a CB1 receptor-specific antagonist, indicating the involvement of the CB2 receptor but not the CB1 receptor in this cellular response. G(i) or G(o) is also assumed to be involved, because pertussis toxin treatment of the cells abolished the response. We further examined the structure-activity relationship. We found that 2-arachidonoylglycerol is the most potent compound among a number of naturally occurring cannabimimetic molecules. Interestingly, anandamide and N-palmitoylethanolamine, other putative endogenous ligands, were found to be a weak partial agonist and an inactive ligand, respectively. These results strongly suggest that the CB2 receptor is originally a 2-arachidonoylglycerol receptor, and 2-arachidonoylglycerol is the intrinsic natural ligand for the CB2 receptor that is abundant in the immune system. Topics: Amides; Arachidonic Acids; Calcium Signaling; Camphanes; Cannabinoids; Cyclohexanols; Cyclooxygenase Inhibitors; Drug Interactions; Endocannabinoids; Ethanolamines; Glycerides; HL-60 Cells; Humans; Ligands; Lipoxygenase Inhibitors; Molecular Mimicry; Palmitic Acids; Pertussis Toxin; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; RNA, Messenger; Structure-Activity Relationship; Virulence Factors, Bordetella | 2000 |
Pharmacological properties of rat brain fatty acid amidohydrolase in different subcellular fractions using palmitoylethanolamide as substrate.
In the present study, the pharmacological properties of fatty acid amide hydrolase (FAAH) in subcellular fractions of rat brain were investigated using palmitoylethanolamide (PEA) and arachidonyl ethanolamide (anandamide, AEA) as substrates. FAAH hydrolysed [(3)H]PEA in crude homogenates with median K(m) and V(max) values of 2.9 microM and 2.14 nmol.(mg protein)(-1).min(-1), respectively. [(3)H]PEA hydrolysis was inhibited both by non-radioactive AEA (with a K(i) value very similar to the K(m) value for [(3)H]AEA as substrate using the same assay) and by R(-)ibuprofen (mixed-type inhibition K(i) and K'(i) values 88 and 720 microM, respectively). FAAH activity towards both [(3)H]PEA and [(3) myelin = cytosol, but there were no differences between the relative activities towards the two substrates in any of the fractions. [(3)H]PEA hydrolysis in mitochondrial, myelin, microsomal, and synaptosomal fractions was inhibited by oleyl trifluoromethylketone, phenylmethylsulphonyl fluoride, and the R(-)- and S(+)-enantiomers of the nonsteroidal anti-inflammatory drug ibuprofen, with mean IC(50) values in the ranges 0.028-0.041, 0.37-0.52, 67-110, and 130-260 microM, respectively. It is concluded that the pharmacological properties of FAAH in the different subcellular fractions are very similar. Topics: Amides; Amidohydrolases; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acids; Brain; Endocannabinoids; Ethanolamines; Hydrolysis; In Vitro Techniques; Kinetics; Palmitic Acids; Polyunsaturated Alkamides; Rats; Subcellular Fractions; Substrate Specificity; Tritium | 2000 |
Human mast cells take up and hydrolyze anandamide under the control of 5-lipoxygenase and do not express cannabinoid receptors.
Human mast cells (HMC-1) take up anandamide (arachidonoyl-ethanolamide, AEA) with a saturable process (K(m)=200+/-20 nM, V(max)=25+/-3 pmol min(-1) mg protein(-1)), enhanced two-fold over control by nitric oxide-donors. Internalized AEA was hydrolyzed by a fatty acid amide hydrolase (FAAH), whose activity became measurable only in the presence of 5-lipoxygenase, but not cyclooxygenase, inhibitors. FAAH (K(m)=5.0+/-0.5 microM, V(max)=160+/-15 pmol min(-1) mg protein(-1)) was competitively inhibited by palmitoylethanolamide. HMC-1 cells did not display a functional cannabinoid receptor on their surface and neither AEA nor palmitoylethanolamide affected tryptase release from these cells. Topics: 5,8,11,14-Eicosatetraynoic Acid; Amides; Arachidonate 5-Lipoxygenase; Arachidonic Acids; Binding, Competitive; Biological Transport; Cannabinoids; Cell Line; Cyclooxygenase Inhibitors; Endocannabinoids; Ethanolamines; Humans; Ibuprofen; Indoles; Indomethacin; Kinetics; Lipoxygenase Inhibitors; Mast Cells; Palmitic Acids; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug; Tritium | 2000 |
Neurotoxicity of glutamate in chick telencephalon neurons: reduction of toxicity by preincubation with carbachol, but not by the endogenous fatty acid amides anandamide and palmitoylethanolamide.
Exposure of chick telencephalon neurons in serum-free primary culture to glutamate produced a concentration-dependent cell toxicity as seen by an increase in lactate dehydrogenase (LDH) release that was blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine and was reduced by preincubation with the cholinergic agonist carbachol. Preincubation with a threshold concentration of NMDA did not prevent glutamate toxicity, suggesting that chick NMDA receptors do not desensitize in the manner reported for their rodent counterparts. Neither anandamide (arachidonyl ethanolamide, AEA) nor palmitoylethanolamide (PEA) was able to prevent the neurotoxicity produced by prolonged glutamate incubation, even under conditions in which the metabolism of the compounds by fatty acid amide hydrolase or AEA cellular uptake was blocked. It is concluded that treatments reported as granting neuroprotection towards glutamate toxicity in rodent primary neuronal cultures do not necessarily show the same properties in the chick. Topics: Amides; Animals; Arachidonic Acids; Carbachol; Chick Embryo; Dizocilpine Maleate; Drug Antagonism; Endocannabinoids; Ethanolamines; Excitatory Amino Acid Antagonists; Glutamic Acid; L-Lactate Dehydrogenase; N-Methylaspartate; Neurons; Neuroprotective Agents; Palmitic Acids; Polyunsaturated Alkamides; Rats; Species Specificity; Telencephalon | 2000 |
Elevated circulating levels of anandamide after administration of the transport inhibitor, AM404.
The biological actions of the endogenous cannabinoid anandamide are terminated by carrier-mediated transport into neurons and astrocytes, followed by enzymatic hydrolysis. Anandamide transport is inhibited by the compound N-(4-hydroxyphenyl)arachidonylamide (AM404). AM404 potentiates several responses elicited by administration of exogenous anandamide, suggesting that it may also protect endogenous anandamide from inactivation. To test this hypothesis, we studied the effects of AM404 on the plasma levels of anandamide using high-performance liquid chromatography/mass spectrometry (HPLC/MS). Systemic administration of AM404 (10 mg kg(-1) intraperitoneal, i.p. ) caused a gradual increase of anandamide in rat plasma, which was significantly different from untreated controls at 60 and 120 min after drug injection. In plasma, both AM404 and anandamide were associated with a plasma protein, which we identified as albumin by non-denaturing polyacrylamide gel electrophoresis. AM404 (10 mg kg(-1), i.p.) caused a time-dependent decrease of motor activity, which was reversed by the cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide.hydrochloride (SR141716A, 0.5 mg kg(-1), i.p). These results are consistent with the hypothesis that AM404 inhibits anandamide inactivation in vivo. Topics: Amides; Animals; Arachidonic Acids; Endocannabinoids; Ethanolamines; Male; Motor Activity; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley | 2000 |
Dopamine activation of endogenous cannabinoid signaling in dorsal striatum.
We measured endogenous cannabinoid release in dorsal striatum of freely moving rats by microdialysis and gas chromatography/mass spectrometry. Neural activity stimulated the release of anandamide, but not of other endogenous cannabinoids such as 2-arachidonylglycerol. Moreover, anandamide release was increased eightfold over baseline after local administration of the D2-like (D2, D3, D4) dopamine receptor agonist quinpirole, a response that was prevented by the D2-like receptor antagonist raclopride. Administration of the D1-like (D1, D5) receptor agonist SKF38393 had no such effect. These results suggest that functional interactions between endocannabinoid and dopaminergic systems may contribute to striatal signaling. In agreement with this hypothesis, pretreatment with the cannabinoid antagonist SR141716A enhanced the stimulation of motor behavior elicited by systemic administration of quinpirole. The endocannabinoid system therefore may act as an inhibitory feedback mechanism countering dopamine-induced facilitation of motor activity. Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Amides; Animals; Arachidonic Acids; Calcium; Cannabinoid Receptor Modulators; Corpus Striatum; Dopamine; Dopamine Agonists; Dopamine Antagonists; Endocannabinoids; Ethanolamines; Gas Chromatography-Mass Spectrometry; Glycerides; Hyperkinesis; Male; Microdialysis; Motor Activity; Oleic Acids; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Potassium; Pyrazoles; Quinpirole; Raclopride; Rats; Rats, Wistar; Receptors, Cannabinoid; Receptors, Dopamine D2; Receptors, Drug; Rimonabant; Salicylamides; Signal Transduction; Single-Blind Method; Sodium; Tetrodotoxin | 1999 |
Anandamide activates human platelets through a pathway independent of the arachidonate cascade.
Anandamide (arachidonoylethanolamide, AnNH) is shown to activate human platelets, a process which was not inhibited by acetylsalicylic acid (aspirin). Unlike AnNH, hydroperoxides generated thereof by lipoxygenase activity, and the congener (13-hydroxy)linoleoylethanolamide, were unable to activate platelets, though they counteracted AnNH-mediated stimulation. On the other hand, palmitoylethanolamide neither activated human platelets nor blocked the AnNH effects. AnNH inactivation by human platelets was afforded by a high-affinity transporter, which was activated by nitric oxide-donors up to 225% of the control. The internalized AnNH could thus be hydrolyzed by a fatty acid amide hydrolase (FAAH), characterized here for the first time. Topics: Adenosine Diphosphate; Amides; Amidohydrolases; Amino Acid Sequence; Arachidonic Acid; Arachidonic Acids; Blood Platelets; Calcium; Cannabinoids; Endocannabinoids; Ethanolamines; Humans; In Vitro Techniques; Molecular Sequence Data; Palmitic Acids; Platelet Activation; Polyunsaturated Alkamides | 1999 |
Elevated endogenous cannabinoids in schizophrenia.
Evidence suggests that cannabinoid receptors, the pharmacologcial target of cannabis-derived drugs, and their accompanying system of endogenous activators may be dysfunctional in schizophrenia. To test this hypothesis, we examined whether endogenous cannabinoid concentrations in cerebrospinal fluid of schizophrenic patients are altered compared to nonschizophrenic controls. Endogenous cannabinoids were purified from cerebrospinal fluid of 10 patients with schizophrenia and 11 non-schizophrenic controls by high-performance liquid chromatography, and quantified by isotope dilution gas-chromatography/mass-spectrometry. Cerebrospinal concentrations of two endogenous cannabinoids (anandamide and palmitylethanolamide) were significantly higher in schizophrenic patients than non-schizophrenic controls (p < 0.05). By contrast, levels of 2-arachidonylglycerol, another endogenous cannabinoid lipid, were below detection in both groups. The findings did not seem attributable to gender, age or medication. Elevated anandamide and palmitylethanolamide levels in cerebrospinal fluid of schizophrenic patients may reflect an imbalance in endogenous cannabinoid signaling, which may contribute to the pathogenesis of schizophrenia. Topics: Adult; Amides; Arachidonic Acids; Cannabinoids; Chromatography, High Pressure Liquid; Endocannabinoids; Ethanolamines; Female; Gas Chromatography-Mass Spectrometry; Humans; Male; Middle Aged; Palmitic Acids; Polyunsaturated Alkamides; Schizophrenia | 1999 |
Control of pain initiation by endogenous cannabinoids.
The potent analgesic effects of cannabis-like drugs and the presence of CB1-type cannabinoid receptors in pain-processing areas of the brain and spinal cord indicate that endogenous cannabinoids such as anandamide may contribute to the control of pain transmission within the central nervous system (CNS). Here we show that anandamide attenuates the pain behaviour produced by chemical damage to cutaneous tissue by interacting with CB1-like cannabinoid receptors located outside the CNS. Palmitylethanolamide (PEA), which is released together with anandamide from a common phospholipid precursor, exerts a similar effect by activating peripheral CB2-like receptors. When administered together, the two compounds act synergistically, reducing pain responses 100-fold more potently than does each compound alone. Gas-chromatography/mass-spectrometry measurements indicate that the levels of anandamide and PEA in the skin are enough to cause a tonic activation of local cannabinoid receptors. In agreement with this possibility, the CB1 antagonist SR141716A and the CB2 antagonist SR144528 prolong and enhance the pain behaviour produced by tissue damage. These results indicate that peripheral CB1-like and CB2-like receptors participate in the intrinsic control of pain initiation and that locally generated anandamide and PEA may mediate this effect. Topics: Amides; Analgesics; Animals; Arachidonic Acids; Cannabinoids; Drug Synergism; Endocannabinoids; Ethanolamines; Formaldehyde; Gas Chromatography-Mass Spectrometry; Male; Mice; Pain; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug | 1998 |
The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain.
This study assessed the effects of two N-acylethanolamides in established rat models of visceral and somatic inflammatory pain. (1) The therapeutic effects of the cannabinoid anandamide and the putative CB2 agonist palmitoylethanolamide were tested in a model of persistent visceral pain (turpentine inflammation of the urinary bladder). Both anandamide (at a dose of 25 mg/kg) and palmitoylethanolamide (at doses of 10-30 mg/kg) were able to attenuate the viscero-visceral hyper-reflexia (VVH) induced by inflammation of the urinary bladder. (2) The effects of the same compounds on the behavioural response to subcutaneous formalin injection were assessed. The characteristic biphasic response was observed in control animals. Anandamide (dose range 5-25 mg/kg) and palmitoylethanolamide (dose range 5-10 mg/kg) both reduced the second phase of the response. The results confirm the analgesic potential of endogenous ligands at cannabinoid receptor sites. The anti-nociceptive effect of the putative CB2 receptor agonist, palmitoylethanolamide, is particularly interesting since it is believed to be a peripherally mediated effect. This observation might be exploited to separate central psychotropic effects from peripheral analgesic actions of the cannabinoids, under inflammatory conditions. Topics: Amides; Analgesics; Animals; Arachidonic Acids; Cannabinoids; Capillary Permeability; Cystitis; Electrophysiology; Endocannabinoids; Ethanolamines; Female; Formaldehyde; Hyperalgesia; Inflammation; Nociceptors; Pain; Pain Measurement; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Urinary Bladder | 1998 |
Effects of cannabinoid receptor ligands on LPS-induced pulmonary inflammation in mice.
The effects of cannabinoid receptor agonists WIN 55,212-2, delta9-tetrahydrocannabinol (delta9-THC), arachidonoylethanolamide (anandamide) and palmitoylethanolamide on lipopolysaccharide (LPS) -induced bronchopulmonary inflammation in mice were investigated. WIN 55,212-2 and delta9-THC induced a concentration-dependent decrease in TNF-alpha level in the bronchoalveolar lavage fluid (BALF) (maximum inhibition 52.7% and 36.9% for intranasal doses of 750 nmol x kg(-1) and 2.65 mmol x kg(-1), respectively). This effect was accompanied by moderately reduced neutrophil recruitment. Palmitoylethanolamide (750 nmol x kg(-1)) diminished the level of TNF-alpha in BALF by 31.5% but had no effect on neutrophil recruitment. Anandamide (7.5-750 nmol x kg(-1)) did not influence the inflammatory process but TNF-alpha level and neutrophil recruitment were decreased by 28.0% and 62.0%, respectively, with 0.075 nmol x kg(-1). These results demonstrate that the cannabinoid receptor ligands inhibited LPS-induced pulmonary inflammation and suggest that this effect could be at least in part mediated by the cannabinoid CB2 receptor. Topics: Amides; Animals; Arachidonic Acids; Benzoxazines; Bronchoalveolar Lavage Fluid; Endocannabinoids; Ethanolamines; Lipopolysaccharides; Male; Mice; Mice, Inbred BALB C; Morpholines; Naphthalenes; Neutrophils; Palmitic Acids; Pneumonia; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug; Tumor Necrosis Factor-alpha | 1998 |
Watching the pot boil.
Topics: Amides; Analgesics; Animals; Arachidonic Acids; Camphanes; Cannabinoids; Endocannabinoids; Ethanolamines; Mice; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant | 1998 |
The endogenous cannabinoid anandamide, but not the CB2 ligand palmitoylethanolamide, prevents the viscero-visceral hyper-reflexia associated with inflammation of the rat urinary bladder.
Anandamide, an endogenous ligand at the CB1 cannabinoid receptor and palmitoylethanolamide (a putative endogenous ligand at the CB2 receptor) have both been shown to possess anti-hyperalgesic properties in models of somatic and visceral inflammation. In the turpentine-inflamed rat urinary bladder a reversal of the inflammation-associated viscero-visceral hyperreflexia (VVH) was observed when the cannabinoids were administered 135 min after the induction of inflammation. Therefore, in this study we determined the efficacy of these two N-acylethanolamides in the prevention of VVH in the same model, using a prophylactic dosing regimen. Palmitoylethanolamide did not prevent the VVH (in the dose range 10-30 mg/kg, i.a), but anandamide attenuated the response in a dose related manner, with a threshold of 25 mg/kg (i.a). These findings provide further support for an acute anti-nociceptive and anti-hyperalgesic role for CB1 receptor agonists, with CB2 agonist effects only becoming important once the effects of inflammation are established. Topics: Amides; Animals; Arachidonic Acids; Cannabinoids; Endocannabinoids; Ethanolamines; Female; Inflammation; Injections, Intra-Arterial; Ligands; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Reflex, Abnormal; Urinary Bladder | 1998 |
The actions of some cannabinoid receptor ligands in the rat isolated mesenteric artery.
1. The actions of a number of cannabinoid receptor ligands were investigated using the myograph-mounted rat isolated mesenteric artery. Anandamide, CP 55,940, HU-210, palmitoylethanolamide and WIN 55,212-2 all caused concentration-dependent relaxations of methoxamine-precontracted vessels which were not affected by removal of the endothelium. 2. Precontracting vessels with 60 mM KCl instead of methoxamine greatly reduced the vasorelaxant effects of anandamide and palmitoylethanolamide. High K+ solution caused a modest decrease in the relaxant potency of CP 55,940 and HU-210, and had no effect on relaxations induced by WIN 55,212-2. 3. Relaxations of methoxamine-induced tone by anandamide, CP 55,940 and HU-210, but not palmitoylethanolamide and WIN 55,212-2, were attenuated by the cannabinoid receptor antagonist, SR 141716A. Relaxation of vessels contracted with 60 mM KCl by CP 55,940 was also sensitive to SR 141716A. 4. Anandamide and CP 55,940 caused small but concentration-dependent contractions in resting vessels in the absence of extracellular calcium. These were not sensitive to SR 141716A. Palmitoylethanolamide and WIN 55,212-2 produced smaller contractions only at higher concentrations. 5. Anandamide and CP 55,940, but not palmitoylethanolamide and WIN 55,212-2, caused concentration-dependent inhibition of the phasic contractions induced by methoxamine in calcium-free conditions, but only anandamide caused inhibition of contractions to caffeine under such conditions. These inhibitory effects were not antagonised by SR 141716A. 6. The present study provides the first detailed investigation of the actions of cannabinoid agonists on vascular smooth muscle. Our results show that these compounds exert both receptor-dependent and -independent effects on agonist-induced calcium mobilization in the rat isolated mesenteric artery. Topics: Amides; Animals; Arachidonic Acids; Benzoxazines; Cannabinoids; Cyclohexanols; Dronabinol; Endocannabinoids; Endothelium, Vascular; Ethanolamines; In Vitro Techniques; Ligands; Male; Mesenteric Arteries; Methoxamine; Morpholines; Muscle Contraction; Muscle, Smooth, Vascular; Naphthalenes; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar | 1998 |
Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes.
Anandamide (arachidonoylethanolamide, AnNH) and palmitoylethanolamide (PEA) have been proposed as the physiological ligands, respectively, of central and peripheral cannabinoid receptors. Both of these receptors are expressed in immune cells, including macrophages and mast cells/basophils, where immunomodulatory and/or anti-inflammatory actions of AnNH and PEA have been recently reported. We now provide biochemical grounds to these actions by showing that the biosynthesis, uptake, and degradation of AnNH and PEA occur in leukocytes. On stimulation with ionomycin, J774 macrophages and RBL-2H3 basophils produced AnNH and PEA, probably through the hydrolysis of the corresponding N-acylphosphatidylethanolamines, also found among endogenous phospholipids. Immunological challenge of RBL-2H3 cells also caused AnNH and PEA release. The chemical structure and the amounts of AnNH and PEA produced upon ionomycin stimulation were determined by means of double radiolabeling experiments and isotope dilution gas chromatography/electron impact mass spectrometry. Both cell lines rapidly sequestered the two amides from the culture medium through temperature-dependent, saturable and chemically inactivable mechanisms. Once uptaken by basophils, AnNH and PEA compete for the same inactivating enzyme which catalyzes their hydrolysis to ethanolamine. This enzyme was found in both microsomal and 10,000 x g fractions of RBL cell homogenates, and exhibited similar inhibition and temperature/pH dependence profiles but a significantly higher affinity for PEA with respect to neuronal "anandamide amidohydrolase." The finding of biosynthetic and inactivating mechanisms for AnNH and PEA in macrophages and basophils supports the previously proposed role as local modulators of immune/inflammatory reactions for these two long chain acylethanolamides. Topics: Amides; Anti-Inflammatory Agents, Non-Steroidal; Antiviral Agents; Arachidonic Acids; Calcium Channel Blockers; Cannabinoids; Cell Line; Chromatography, Thin Layer; Endocannabinoids; Ethanolamines; Gas Chromatography-Mass Spectrometry; Humans; Hydrogen-Ion Concentration; Leukocytes; Palmitic Acids; Polyunsaturated Alkamides | 1997 |
Influence of fatty acid ethanolamides and delta9-tetrahydrocannabinol on cytokine and arachidonate release by mononuclear cells.
The effects of arachidonic acid ethanolamide (anandamide), palmitoylethanolamide and delta9-tetrahydrocannabinol on the production of tumor necrosis factor-alpha (TNF-alpha), interleukin-4, interleukin-6, interleukin-8, interleukin-10, interferon-gamma, p55 and p75 TNF-alpha soluble receptors by stimulated human peripheral blood mononuclear cells as well as [3H]arachidonic acid release by non-stimulated and N-formyl-Met-Leu-Phe (fMLP)-stimulated human monocytes were investigated. Anandamide was shown to diminish interleukin-6 and interleukin-8 production at low nanomolar concentrations (3-30 nM) but inhibited the production of TNF-alpha, interferon-gamma, interleukin-4 and p75 TNF-alpha soluble receptors at higher concentrations (0.3-3 microM). Palmitoylethanolamide inhibited interleukin-4, interleukin-6, interleukin-8 synthesis and the production of p75 TNF-alpha soluble receptors at concentrations similar to those of anandamide but failed to influence TNF-alpha and interferon-gamma production. The effect of both compounds on interleukin-6 and interleukin-8 production disappeared with an increase in the concentration used. Neither anandamide nor palmitoylethanolamide influenced interleukin-10 synthesis. delta9-Tetrahydrocannabinol exerted a biphasic action on pro-inflammatory cytokine production. TNF-alpha, interleukin-6 and interleukin-8 synthesis was maximally inhibited by 3 nM delta9-tetrahydrocannabinol but stimulated by 3 microM delta9-tetrahydrocannabinol, as was interleukin-8 and interferon-gamma synthesis. The level of interleukin-4, interleukin-10 and p75 TNF-alpha soluble receptors was diminished by 3 microM delta9-tetrahydrocannabinol. [3H]Arachidonate release was stimulated only by high delta9-tetrahydrocannabinol and anandamide concentrations (30 microM). These results suggest that the inhibitory properties of anandamide, palmitoylethanolamide and delta9-tetrahydrocannabinol are determined by the activation of the peripheral-type cannabinoid receptors, and that various endogenous fatty acid ethanolamides may participate in the regulation of the immune response. Topics: Amides; Arachidonic Acid; Arachidonic Acids; Cytokines; Dronabinol; Endocannabinoids; Ethanolamines; Humans; Leukocytes, Mononuclear; Palmitic Acids; Polyunsaturated Alkamides; Secretory Rate | 1997 |
The endogenous cannabimimetic eicosanoid, anandamide, induces arachidonate release in J774 mouse macrophages.
Topics: 8-Bromo Cyclic Adenosine Monophosphate; Amides; Animals; Arachidonic Acid; Arachidonic Acids; Cyclic AMP; Dinoprostone; Endocannabinoids; Enzyme Activation; Ethanolamines; Genistein; GTP-Binding Proteins; Linoleic Acids; Macrophages; Mice; Naphthalenes; Neuroblastoma; Nitriles; Palmitic Acids; Phospholipases A; Polyunsaturated Alkamides; Second Messenger Systems; Staurosporine; Tumor Cells, Cultured; Tyrphostins; Virulence Factors, Bordetella | 1997 |
The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons.
The amino acid L-glutamate is a neurotransmitter that mediates fast neuronal excitation in a majority of synapses in the central nervous system. Glutamate stimulates both N-methyl-D-aspartate (NMDA) and non-NMDA receptors. While activation of NMDA receptors has been implicated in a variety of neurophysiologic processes, excessive NMDA receptor stimulation (excitotoxicity) is thought to be primarily responsible for neuronal injury in a wide variety of acute neurological disorders including hypoxia-ischemia, seizures, and trauma. Very little is known about endogenous molecules and mechanisms capable of modulating excitotoxic neuronal death. Saturated N-acylethanolamides like palmitoylethanolamide accumulate in ischemic tissues and are synthesized by neurons upon excitatory amino acid receptor activation. Here we report that palmitoylethanolamide, but not the cognate N-acylamide anandamide (the ethanolamide of arachidonic acid), protects cultured mouse cerebellar granule cells against glutamate toxicity in a delayed postagonist paradigm. Palmitoylethanolamide reduced this injury in a concentration-dependent manner and was maximally effective when added 15-min postglutamate. Cannabinoids, which like palmitoylethanolamide are functionally active at the peripheral cannabinoid receptor CB2 on mast cells, also prevented neuron loss in this delayed postglutamate model. Furthermore, the neuroprotective effects of palmitoylethanolamide, as well as that of the active cannabinoids, were efficiently antagonized by the candidate central cannabinoid receptor (CB1) agonist anandamide. Analogous pharmacological behaviors have been observed for palmitoylethanolamide (ALI-Amides) in downmodulating mast cell activation. Cerebellar granule cells expressed mRNA for CB1 and CB2 by in situ hybridization, while two cannabinoid binding sites were detected in cerebellar membranes. The results suggest that (i) non-CB1 cannabinoid receptors control, upon agonist binding, the downstream consequences of an excitotoxic stimulus; (ii) palmitoylethanolamide, unlike anandamide, behaves as an endogenous agonist for CB2-like receptors on granule cells; and (iii) activation of such receptors may serve to downmodulate deleterious cellular processes following pathological events or noxious stimuli in both the nervous and immune systems. Topics: Amides; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acids; Base Sequence; Cannabinoids; Cells, Cultured; Cerebellum; Dizocilpine Maleate; Endocannabinoids; Ethanolamines; Glutamic Acid; In Situ Hybridization; Kinetics; Mice; Mice, Inbred BALB C; Models, Neurological; Molecular Sequence Data; N-Methylaspartate; Neurons; Neurotoxins; Oligonucleotide Probes; Palmitic Acids; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug; RNA, Messenger; Time Factors | 1996 |
Biosynthesis of an endogenous cannabinoid precursor in neurons and its control by calcium and cAMP.
Understanding the mechanisms involved in the biogenesis of N-arachidonoylethanolamine (anandamide) and N-palmitoylethanolamine is important in view of the possible role of these lipids as endogenous cannabinoid substances. Anandamide (which activates cannabinoid CB1 receptors) and N-palmitoylethanolamine (which activates a CB2-like receptor subtype in mast cells) may both derive from cleavage of precursor phospholipid, N-acylphosphatidylethanolamine (NAPE), catalyzed by Ca(2+)-activated D-type phosphodiesterase activity. We report here that the de novo biosynthesis of NAPE is enhanced in a Ca(2+)-dependent manner when rat cortical neurons are stimulated with the Ca(2+)-ionophore ionomycin or with membrane-depolarizing agents such as veratridine and kainate. This reaction is likely to be mediated by a neuronal N-acyltransferase activity, which catalyzes the transfer of an acyl group from phosphatidylcholine to the ethanolamine moiety of phosphatidylethanolamine. In addition, we show that Ca2+-dependent NAPE biosynthesis is potentiated by agents that increase cAMP levels, including forskolin and vasoactive intestinal peptide. Our results thus indicate that NAPE levels in cortical neurons are controlled by Ca2+ ions and cAMP. Such regulatory effect may participate in maintaining a supply of cannabimimetic N-acylethanolamines during synaptic activity, and prime target neurons for release of these bioactive lipids. Topics: Amides; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acids; Arylamine N-Acetyltransferase; Astrocytes; Calcium; Calcium Channel Blockers; Calmodulin; Cannabinoids; Carbachol; Cyclic AMP; Endocannabinoids; Enzyme Inhibitors; Ethanolamine; Ethanolamines; Imidazoles; Ionomycin; Ionophores; Neurons; Nicotinic Agonists; Palmitic Acids; Phosphatidylethanolamines; Polyunsaturated Alkamides; Rats; Sodium Channel Agonists; Tritium; Vasoactive Intestinal Peptide; Veratridine | 1996 |
Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide.
Mast cells are multifunctional bone marrow-derived cells found in mucosal and connective tissues and in the nervous system, where they play important roles in tissue inflammation and in neuroimmune interactions. Very little is known about endogenous molecules and mechanisms capable of modulating mast cell activation. Palmitoylethanolamide, found in peripheral tissues, has been proposed to behave as a local autacoid capable of downregulating mast cell activation and inflammation. A cognate N-acylamide, anandamide, the ethanolamide of arachidonic acid, occurs in brain and is a candidate endogenous agonist for the central cannabinoid receptor (CB1). As a second cannabinoid receptor (CB2) has been found in peripheral tissues, the possible presence of CB2 receptors on mast cells and their interaction with N-acylamides was investigated. Here we report that mast cells express both the gene and a functional CB2 receptor protein with negative regulatory effects on mast cell activation. Although both palmitoylethanolamide and anandamide bind to the CB2 receptor, only the former downmodulates mast cell activation in vitro. Further, the functional effect of palmitoylethanolamide, as well as that of the active cannabinoids, was efficiently antagonized by anandamide. The results suggest that (i) peripheral cannabinoid CB2 receptors control, upon agonist binding, mast cell activation and therefore inflammation; (ii) palmitoylethanolamide, unlike anandamide, behaves as an endogenous agonist for the CB2 receptor on mast cells; (iii) modulatory activities on mast cells exerted by the naturally occurring molecule strengthen a proposed autacoid local inflammation antagonism (ALIA) mechanism; and (iv) palmitoylethanolamide and its derivatives may provide antiinflammatory therapeutic strategies specifically targeted to mast cells ("ALIAmides"). Topics: Amides; Animals; Arachidonic Acids; Base Sequence; Benzoxazines; Cannabinoids; Cell Membrane; Cells, Cultured; Down-Regulation; Endocannabinoids; Ethanolamines; Inflammation; Male; Mast Cells; Molecular Mimicry; Molecular Sequence Data; Morpholines; Naphthalenes; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Cell Surface; Receptors, Drug; RNA, Messenger | 1995 |