anandamide has been researched along with 15-hydroxy-5-8-11-13-eicosatetraenoic-acid* in 2 studies
2 other study(ies) available for anandamide and 15-hydroxy-5-8-11-13-eicosatetraenoic-acid
Article | Year |
---|---|
Amino acid determinants in cyclooxygenase-2 oxygenation of the endocannabinoid anandamide.
The endocannabinoid arachidonylethanolamide (AEA, anandamide) is an endogenous ligand for the cannabinoid receptors and has been shown to be oxygenated by cyclooxygenase-2 (COX-2). We examined the structural requirements for COX-mediated, AEA oxygenation using a number of substrate analogues and site-directed mutants of COX-2. Fourteen AEA analogues were synthesized and tested as COX substrates. These studies identified the hydroxyl moiety of AEA as a critical determinant in the ability of COX enzymes to effect robust endocannabinoid oxygenation. In addition, these studies suggest that subtle structural modifications of AEA analogues near the ethanolamide moiety can result in pronounced changes in their ability to serve as COX-2 substrates. Site-directed mutagenesis studies have permitted the development of a model of AEA binding within the COX-2 active site. As with arachidonic acid, the omega-terminus of AEA binds in a hydrophobic alcove near the top of the COX-2 active site. The polar ethanolamide moiety of AEA, like the carboxylate of arachidonate, interacts with Arg-120 at the bottom of the COX-2 active site. Mutation of Tyr-385 prevents AEA oxygenation, suggesting that, as in the case of other COX substrates, AEA metabolism is initiated by Tyr-385-mediated hydrogen abstraction. Thus, AEA binds within the COX-2 active site in a conformation roughly similar to that of arachidonic acid. However, important differences have been identified that account for the isoform selectivity of AEA oxygenation. Importantly, the COX-2 side pocket and Arg-513 in particular are critical determinants of the ability of COX-2 to efficiently generate prostaglandin H(2) ethanolamide. The reduced efficiency of COX-1-mediated, AEA oxygenation can thus be explained by the absence of an arginine residue at position 513 in this isoform. Mutational analysis of Leu-531, an amino acid located directly across from the COX-2 side pocket, suggests that AEA is shifted away from this hydrophobic residue and toward Arg-513 relative to arachidonic acid. Coupled with earlier observations with the endocannabinoid 2-arachidonylglycerol, these results indicate that one possible function of the highly conserved COX-2 active site side pocket is to promote endocannabinoid oxygenation. Topics: Acetylation; Amino Acids; Animals; Arachidonic Acids; Binding Sites; Cannabinoid Receptor Modulators; Cannabinoids; Catalysis; Cyclooxygenase 1; Cyclooxygenase 2; Endocannabinoids; Fatty Acids, Unsaturated; Hydrophobic and Hydrophilic Interactions; Hydroxyeicosatetraenoic Acids; Isoenzymes; Male; Membrane Proteins; Methionine; Mice; Mutagenesis, Site-Directed; Oxygen; Polyunsaturated Alkamides; Prostaglandin-Endoperoxide Synthases; Serine; Sheep; Substrate Specificity; Tyrosine | 2003 |
Oxygenated metabolites of anandamide and 2-arachidonoylglycerol: conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase.
This study was aimed at finding structural requirements for the interaction of the acyl chain of endocannabinoids with cannabinoid receptors, membrane transporter protein, and fatty acid amide hydrolase (FAAH). To this end, the flexibility of the acyl chain was restricted by introduction of an 1-hydroxy-2Z,4E-pentadiene system in anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) at various positions using different lipoxygenases. This brought about selectivity and attenuated the binding potency of AEA and 2-AG. Although the displacement constants were modest, 15(S)-hydroxy-eicosa-5Z,8Z,11Z,13E-tetraenoyl-N-(2-hydroxyethyl)amine was found to bind selectively to the CB(1) receptor, whereas its 1-arachidonoyl-sn-glycerol analogue and 13(S)-hydroxy-octadeca-9Z,11E-dienoyl-N-(2-hydroxyethyl)amine could selectively bind to the CB(2) receptor. 11(S)-Hydroxy-eicosa-5Z,8Z,12E,14Z-tetraenoyl-N-(2-hydroxyethyl)amine did not bind to either receptor, whereas 12(S)-hydroxy-eicosa-5Z,8Z,10E,14Z-tetraenoyl-N-(2-hydroxyethyl)amine did bind to both CB receptors with an affinity similar to that of AEA. All oxygenated anandamide derivatives were good inhibitors of FAAH (low micromolar K(i)) but were ineffective on the AEA transporter. 2-AG rapidly isomerizes into 1(3)-arachidonoyl-sn-glycerol. Both 1- and 3-arachidonoyl-sn-glycerol did not bind to either CB receptor and did not interfere with AEA transport. Thus, after it is isomerized, 2-AG is inactivated, thereby decreasing effective concentrations of 2-AG. Analysis of (1)H NMR spectra revealed that chloroform did not induce notably different conformations in the acyl chain of 15(S)-hydroxy-eicosa-5Z,8Z,11Z,13E-tetraenoic acid as compared with water. Molecular dynamics (MD) simulations of AEA and its analogues in the presence of explicit water molecules revealed that a tightly folded conformation of the acyl chain is not the only requirement for CB(1) binding. Structural details of the C(2)-C(15) loop, such as an sp(2) carbon at position 11, are necessary for receptor binding. The MD simulations may suggest that the average orientations of the pentyl tail of AEA and 12(S)-hydroxy-eicosa-5Z,8Z,10E,14Z-tetraenoyl-N-(2-hydroxyethyl)amine are different from that of the low-affinity, inactive ligands. Topics: Amidohydrolases; Animals; Arachidonic Acids; Binding, Competitive; Biological Transport; Brain; Cannabinoid Receptor Modulators; Cannabinoids; Carrier Proteins; Chloroform; Cyclohexanols; Endocannabinoids; Glycerides; Humans; Hydroxyeicosatetraenoic Acids; In Vitro Techniques; Magnetic Resonance Spectroscopy; Male; Models, Molecular; Molecular Conformation; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Tumor Cells, Cultured; Water | 2002 |