anandamide has been researched along with 14-15-epoxy-5-8-11-eicosatrienoic-acid* in 3 studies
3 other study(ies) available for anandamide and 14-15-epoxy-5-8-11-eicosatrienoic-acid
Article | Year |
---|---|
Anandamide oxidation by wild-type and polymorphically expressed CYP2B6 and CYP2D6.
Anandamide is an arachidonic acid-derived endogenous cannabinoid that regulates normal physiological functions and pathophysiological responses within the central nervous system and in the periphery. Several cytochrome P450 (P450) isoforms metabolize anandamide to form hydroxylated and epoxygenated products. Human CYP2B6 and CYP2D6, which are expressed heterogeneously throughout the brain, exhibit clinically significant polymorphisms and are regulated by external factors, such as alcohol and smoking. Oxidative metabolism of anandamide by these two P450s may have important functional consequences for endocannabinoid system signaling. In this study, we investigated the metabolism of anandamide by wild-type CYP2B6 (2B6.1) and CYP2D6 (2D6.1) and by their common polymorphic mutants 2B6.4, 2B6.6, 2B6.9, and 2D6.34. Major differences in anandamide metabolism by the two isoforms and their mutants were found in vitro with respect to the formation of 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 14,15-epoxyeicosatetraenoic acid ethanolamide (14,15-EET-EA). Pharmacological studies showed that both 20-HETE-EA and 14,15-EET-EA bind to the rat brain cannabinoid CB1 receptor with lower affinities relative to that of anandamide. In addition, both products are degraded more rapidly than anandamide in rat brain homogenates. Their degradation occurs via different mechanisms involving either fatty acid amide hydrolase (FAAH), the major anandamide-degrading enzyme, or epoxide hydrolase (EH). Thus, the current findings provide potential new insights into the actions of inhibitors FAAH and EH, which are being developed as novel therapeutic agents, as well as a better understanding of the interactions between the cytochrome P450 monooxygenases and the endocannabinoid system. Topics: 8,11,14-Eicosatrienoic Acid; Amidohydrolases; Animals; Arachidonic Acids; Aryl Hydrocarbon Hydroxylases; Brain; Cannabinoid Receptor Modulators; Cytochrome P-450 CYP2B6; Cytochrome P-450 CYP2D6; Endocannabinoids; Epoxide Hydrolases; Humans; Hydroxyeicosatetraenoic Acids; Hydroxylation; Male; Oxidation-Reduction; Oxidoreductases, N-Demethylating; Polymorphism, Genetic; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1 | 2011 |
The endocannabinoid anandamide is a substrate for the human polymorphic cytochrome P450 2D6.
Members of the cytochrome P450 (P450) family of drug-metabolizing enzymes are present in the human brain, and they may have important roles in the oxidation of endogenous substrates. The polymorphic CYP2D6 is one of the major brain P450 isoforms and has been implicated in neurodegeneration, psychosis, schizophrenia, and personality traits. The objective of this study was to determine whether the endocannabinoid arachidonoylethanolamide (anandamide) is a substrate for CYP2D6. Anandamide is the endogenous ligand to the cannabinoid receptor CB1, which is also activated by the main psychoactive component in marijuana. Signaling via the CB1 receptor alters sensory and motor function, cognition, and emotion. Recombinant CYP2D6 converted anandamide to 20-hydroxyeicosatetraenoic acid ethanolamide and 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EET-EAs) with low micromolar K(m) values. CYP2D6 further metabolized the epoxides of anandamide to form novel dioxygenated derivatives. Human brain microsomal and mitochondrial preparations metabolized anandamide to form hydroxylated and epoxygenated products, respectively. An inhibitory antibody against CYP2D6 significantly decreased the mitochondrial formation of the EET-EAs. To our knowledge, anandamide and its epoxides are the first eicosanoid-like molecules to be identified as CYP2D6 substrates. Our study suggests that anandamide may be a physiological substrate for brain mitochondrial CYP2D6, implicating this polymorphic enzyme as a potential component of the endocannabinoid system in the brain. This study also offers support to the hypothesis that neuropsychiatric phenotype differences among individuals with genetic variations in CYP2D6 could be ascribable to interactions of this enzyme with endogenous substrates. Topics: 8,11,14-Eicosatrienoic Acid; Arachidonic Acid; Arachidonic Acids; Brain; Cytochrome P-450 CYP2D6; Endocannabinoids; Epoxy Compounds; Humans; Hydroxylation; Microsomes; Mitochondria; Polyunsaturated Alkamides; Time Factors | 2008 |
Block of erg current by linoleoylamide, a sleep-inducing agent, in pituitary GH3 cells.
Linoleoylamide is physiological constituent of neurons. The effects of this agent, also a sleep-inducing agent, on ion currents in pituitary GH(3) cells were investigated. Hyperpolarization-elicited K(+) currents in GH(3) cells bathed in a high-K(+), Ca(2+)-free solution were studied to determine the effects of linoleoylamide and other related compounds on the I(K(IR)) that was sensitive to inhibition by E-4031 and identified as an erg (ether-à-go-go-related-gene) current. Linoleoylamide suppressed the amplitude of I(K(IR)) in a concentration-dependent manner with an IC(50) value of 5 microM. Oleamide (20 microM) inhibited the amplitude of I(K(IR)), while neither arachidonic acid (20 microM) nor 14,15-epoxyeicosatrienoic acid (20 microM) had an effect on it. In GH(3) cells incubated with anandamide (20 microM) or arachidonic acid (20 microM), the linoleoylamide-induced inhibition of I(K(IR)) remained unaltered. In inside-out patches, arachidonic acid (20 microM) and 14,15-epoxyeicosatrienoic acid (20 microM) stimulated large-conductance Ca(2+)-activated K(+) channels; however, linoleoylamide (20 microM) had little or no effect on them. Under current-clamp mode, linoleoylamide (20 microM) increased the firing rate. In IMR-32 neuroblastoma cells, linoleoylamide also suppressed I(K(IR)). This study provides the evidence that linoleoylamide has a depressant effect on the erg current, and suggests that this effect may affect hormonal secretion. Topics: 8,11,14-Eicosatrienoic Acid; alpha-Linolenic Acid; Amides; Animals; Arachidonic Acid; Arachidonic Acids; Calcium; Calcium Channels, L-Type; Dose-Response Relationship, Drug; Endocannabinoids; Humans; Hydantoins; Imidazoles; Imidazolidines; Infant, Newborn; Linoleic Acids; Membrane Potentials; Neuroblastoma; Patch-Clamp Techniques; Piperazines; Piperidines; Pituitary Neoplasms; Polyunsaturated Alkamides; Potassium Channels; Pyridines; Tumor Cells, Cultured | 2003 |