amyloid-beta-peptides has been researched along with trimethyloxamine* in 3 studies
3 other study(ies) available for amyloid-beta-peptides and trimethyloxamine
Article | Year |
---|---|
The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer's disease.
Trimethylamine N-oxide (TMAO), a small molecule produced by the metaorganismal metabolism of dietary choline, has been implicated in human disease pathogenesis, including known risk factors for Alzheimer's disease (AD), such as metabolic, cardiovascular, and cerebrovascular disease.. In this study, we tested whether TMAO is linked to AD by examining TMAO levels in cerebrospinal fluid (CSF) collected from a large sample (n = 410) of individuals with Alzheimer's clinical syndrome (n = 40), individuals with mild cognitive impairment (MCI) (n = 35), and cognitively-unimpaired individuals (n = 335). Linear regression analyses were used to determine differences in CSF TMAO between groups (controlling for age, sex, and APOE ε4 genotype), as well as to determine relationships between CSF TMAO and CSF biomarkers of AD (phosphorylated tau and beta-amyloid) and neuronal degeneration (total tau, neurogranin, and neurofilament light chain protein).. CSF TMAO is higher in individuals with MCI and AD dementia compared to cognitively-unimpaired individuals, and elevated CSF TMAO is associated with biomarkers of AD pathology (phosphorylated tau and phosphorylated tau/Aβ. These findings provide additional insight into gut microbial involvement in AD and add to the growing understanding of the gut-brain axis. Topics: Aged; Alzheimer Disease; Amyloid beta-Peptides; Biomarkers; Cognitive Dysfunction; Female; Gastrointestinal Microbiome; Humans; Male; Methylamines; Middle Aged; Peptide Fragments; tau Proteins | 2018 |
Two disaccharides and trimethylamine N-oxide affect Abeta aggregation differently, but all attenuate oligomer-induced membrane permeability.
Interaction between aggregates of amyloid beta protein (Abeta) and membranes has been hypothesized by many to be a key event in the mechanism of neurotoxicity associated with Alzheimer's disease (AD). Proposed membrane-related mechanisms of neurotoxicity include ion channel formation, membrane disruption, changes in membrane capacitance, and lipid membrane oxidation. Recently, osmolytes such as trehalose have been found to delay Abeta aggregation in vitro and reduce neurotoxicity. However, no direct measurements have separated the effects of osmolytes on Abeta aggregation versus membrane interactions. In this article, we tested the influence of trehalose, sucrose and trimethylamine-N-oxide (TMAO) on Abeta aggregation and fluorescent dye leakage induced by Abeta aggregates from liposomes. In the absence of lipid vesicles, trehalose and sucrose, but not TMAO, were found to delay Abeta aggregation. In contrast, all of the osmolytes significantly attenuated dye leakage. Dissolution of preformed Abeta aggregates was excluded as a possible mechanism of dye leakage attenuation by measurements of Congo red binding as well as hydrogen-deuterium exchange detected by mass spectrometry (HX-MS). However, the accelerated conversion of high order oligomers to fibril caused by vesicles did not take place if any of the three osmolytes presented. Instead, in the case of disaccharide, osmolytes were found to form adducts with Abeta, and change the dissociation dynamics of soluble oligomeric species. Both effects may have contributed to the observed osmolyte attenuation of dye leakage. These results suggest that disaccharides and TMAO may have very different effects on Abeta aggregation because of the different tendencies of the osmolytes to interact with the peptide backbone. However, the effects on Abeta membrane interaction may be due to much more general phenomena associated with osmolyte enhancement of Abeta oligomer stability and/or direct interaction of osmolyte with the membrane surface. Topics: Amyloid beta-Peptides; Congo Red; Liposomes; Membranes, Artificial; Methylamines; Molecular Weight; Neurotoxins; Peptide Fragments; Sucrose; Trehalose | 2009 |
Manipulating the amyloid-beta aggregation pathway with chemical chaperones.
Amyloid-beta (Abeta) assembly into fibrillar structures is a defining characteristic of Alzheimer's disease that is initiated by a conformational transition from random coil to beta-sheet and a nucleation-dependent aggregation process. We have investigated the role of organic osmolytes as chemical chaperones in the amyloid pathway using glycerol to mimic the effects of naturally occurring molecules. Osmolytes such as the naturally occurring trimethylamine N-oxide and glycerol correct folding defects by preferentially hydrating partially denatured proteins and entropically stabilize native conformations and polymeric states. Trimethylamine N-oxide and glycerol were found to rapidly accelerate the Abeta random coil-to-beta-sheet conformational change necessary for fiber formation. This was accompanied by an immediate conversion of amorphous unstructured aggregates into uniform globular and possibly nucleating structures. Osmolyte-facilitated changes in Abeta hydration also affected the final stages of amyloid formation and mediated transition from the protofibrils to mature fibers that are observed in vivo. These findings suggest that hydration forces can be used to control fibril assembly and may have implications for the accumulation of Abeta within intracellular compartments such as the endoplasmic reticulum and in vitro modeling of the amyloid pathway. Topics: Alzheimer Disease; Amyloid beta-Peptides; Circular Dichroism; Fluorescent Dyes; Glycerol; Humans; Methylamines; Microscopy, Atomic Force; Microscopy, Electron; Molecular Chaperones; Peptide Fragments; Protein Conformation; Protein Folding; Protein Structure, Secondary; Solubility; Spectrometry, Fluorescence | 1999 |