amyloid-beta-peptides and 4-4-difluoro-4-bora-3a-4a-diaza-s-indacene

amyloid-beta-peptides has been researched along with 4-4-difluoro-4-bora-3a-4a-diaza-s-indacene* in 2 studies

Other Studies

2 other study(ies) available for amyloid-beta-peptides and 4-4-difluoro-4-bora-3a-4a-diaza-s-indacene

ArticleYear
Designed fluorescent probes reveal interactions between amyloid-beta(1-40) peptides and GM1 gangliosides in micelles and lipid vesicles.
    Biophysical journal, 2010, Sep-08, Volume: 99, Issue:5

    A hallmark of the common Alzheimer's disease (AD) is the pathological conversion of its amphiphatic amyloid-beta (Abeta) peptide into neurotoxic aggregates. In AD patients, these aggregates are often found to be tightly associated with neuronal G(M1) ganglioside lipids, suggesting an involvement of G(M1) not only in aggregate formation but also in neurotoxic events. Significant interactions were found between micelles made of newly synthesized fluorescent G(M1) gangliosides labeled in the polar headgroup or the hydrophobic chain and Abeta(1-40) peptide labeled with a BODIPY-FL-C1 fluorophore at positions 12 and 26, respectively. From an analysis of energy transfer between the different fluorescence labels and their location in the molecules, we were able to place the Abeta peptide inside G(M1) micelles, close to the hydrophobic-hydrophilic interface. Large unilamellar vesicles composed of a raftlike G(M1)/bSM/cholesterol lipid composition doped with labeled G(M1) at various positions also interact with labeled Abeta peptide tagged to amino acids 2 or 26. A faster energy transfer was observed from the Abeta peptide to bilayers doped with 581/591-BODIPY-C(11)-G(M1) in the nonpolar part of the lipid compared with 581/591-BODIPY-C(5)-G(M1) residing in the polar headgroup. These data are compatible with a clustering process of G(M1) molecules, an effect that not only increases the Abeta peptide affinity, but also causes a pronounced Abeta peptide penetration deeper into the lipid membrane; all these factors are potentially involved in Abeta peptide aggregate formation due to an altered ganglioside metabolism found in AD patients.

    Topics: Amyloid beta-Peptides; Boron Compounds; Cell Membrane; Electron Transport; Fluorescent Dyes; G(M1) Ganglioside; Hydrophobic and Hydrophilic Interactions; Lipid Bilayers; Micelles; Models, Molecular; Mutagenesis, Site-Directed; Peptide Fragments; Phosphatidylcholines; Protein Binding; Protein Conformation; Spectrometry, Fluorescence; Time Factors; Unilamellar Liposomes

2010
Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid.
    Biochemistry, 2002, Jun-11, Volume: 41, Issue:23

    GM1 ganglioside-bound amyloid beta-protein (GM1-Abeta), found in brains exhibiting early pathological changes of Alzheimer's disease (AD) plaques, has been suggested to accelerate amyloid fibril formation by acting as a seed. We have previously found using dye-labeled Abeta that Abeta recognizes a GM1 cluster, the formation of which is facilitated by cholesterol [Kakio, A., Nishimoto, S., Yanagisawa, K., Kozutsumi, Y., and Matsuzaki, K. (2001) J. Biol. Chem. 276, 24985-24990]. In this study, we investigated the ganglioside species-specificity in its potency to induce a conformational change of Abeta, by which ganglioside-bound Abeta acts as a seed for Abeta fibrillogenesis, using a major ganglioside occurring in brains (GM1, GD1a, GD1b, and GT1b) in raft-like membranes composed of cholesterol and sphingomyelin. Abeta recognized ganglioside clusters, the density of which increased with the number of sialic acid residues. Interestingly, however, mixing of gangliosides inhibited cluster formation. In contrast, the affinities of the protein for the clusters were similar irrespective of lipid composition and of the order of 10(6) M(-)(1) at 37 degrees C. Abeta underwent a conformational transition from an alpha-helix-rich structure to a beta-sheet-rich structure with the increase in protein density on the membrane. Ganglioside-bound Abeta proteins exhibited seeding abilities for amyloid formation. GM1-Abeta exhibited the strongest seeding potential, especially under beta-sheet-forming conditions. This study suggested that lipid composition including gangliosides and cholesterol strictly controls amyloid formation.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Binding Sites; Boron Compounds; Cattle; Coumarins; Fluorescent Dyes; G(M1) Ganglioside; Humans; Liposomes; Membrane Microdomains; Peptide Fragments; Protein Structure, Secondary

2002