amyloid-beta-peptides and 1-palmitoyl-2-oleoylphosphatidylcholine

amyloid-beta-peptides has been researched along with 1-palmitoyl-2-oleoylphosphatidylcholine* in 12 studies

Other Studies

12 other study(ies) available for amyloid-beta-peptides and 1-palmitoyl-2-oleoylphosphatidylcholine

ArticleYear
Gangliosides smelt nanostructured amyloid Aβ(1-40) fibrils in a membrane lipid environment.
    Biochimica et biophysica acta. Biomembranes, 2022, 02-01, Volume: 1864, Issue:1

    Gangliosides induced a smelting process in nanostructured amyloid fibril-like films throughout the surface properties contributed by glycosphingolipids when mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/Aβ(1-40) amyloid peptide. We observed a dynamical smelting process when pre-formed amyloid/phospholipid mixture is laterally mixed with gangliosides. This particular environment, gangliosides/phospholipid/Aβ(1-40) peptide mixed interfaces, showed complex miscibility behavior depending on gangliosides content. At 0% of ganglioside covered surface respect to POPC, Aβ(1-40) peptide forms fibril-like structure. In between 5 and 15% of gangliosides, the fibrils dissolve into irregular domains and they disappear when the proportion of gangliosides reach the 20%. The amyloid interfacial dissolving effect of gangliosides is taken place at lateral pressure equivalent to the organization of biological membranes. Domains formed at the interface are clearly evidenced by Brewster Angle Microscopy and Atomic Force Microscopy when the films are transferred onto a mica support. The domains are thioflavin T (ThT) positive when observed by fluorescence microscopy. We postulated that the smelting process of amyloids fibrils-like structure at the membrane surface provoked by gangliosides is a direct result of a new interfacial environment imposed by the complex glycosphingolipids. We add experimental evidence, for the first time, how a change in the lipid environment (increase in ganglioside proportion) induces a rapid loss of the asymmetric structure of amyloid fibrils by a simple modification of the membrane condition (a more physiological situation).

    Topics: Amyloid; Amyloid beta-Peptides; Gangliosides; Glycosphingolipids; Membrane Lipids; Microscopy, Atomic Force; Nanostructures; Peptide Fragments; Phosphatidylcholines; Surface Properties

2022
Effect of Amyloid-β Monomers on Lipid Membrane Mechanical Parameters-Potential Implications for Mechanically Driven Neurodegeneration in Alzheimer's Disease.
    International journal of molecular sciences, 2020, Dec-22, Volume: 22, Issue:1

    Alzheimer's disease (AD) is a neurodegenerative disease that results in memory loss and the impairment of cognitive skills. Several mechanisms of AD's pathogenesis were proposed, such as the progressive accumulation of amyloid-β (Aβ) and τ pathology. Nevertheless, the exact neurodegenerative mechanism of the Aβ remains complex and not fully understood. This paper proposes an alternative hypothesis of the mechanism based on maintaining the neuron membrane's mechanical balance. The incorporation of Aβ decreases the lipid membrane's elastic properties, which eventually leads to the impairment of membrane clustering, disruption of mechanical wave propagation, and change in gamma oscillations. The first two disrupt the neuron's ability to function correctly while the last one decreases sensory encoding and perception enabling. To begin discussing this mechanical-balance hypothesis, we measured the effect of two selected peptides, Aβ-40 and Aβ-42, as well as their fluorescently labeled modification, on membrane mechanical properties. The decrease of bending rigidity, consistent for all investigated peptides, was observed using molecular dynamic studies and experimental flicker-noise techniques. Additionally, wave propagation was investigated with molecular dynamic studies in membranes with and without incorporated neurodegenerative peptides. A change in membrane behavior was observed in the membrane system with incorporated Aβ.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Brain; Cell Membrane; Humans; Lipid Bilayers; Membrane Lipids; Membrane Potentials; Microscopy, Confocal; Molecular Dynamics Simulation; Neurodegenerative Diseases; Neurons; Peptide Fragments; Phosphatidylcholines

2020
Amyloid β-Peptide Interaction with Membranes: Can Chaperones Change the Fate?
    The journal of physical chemistry. B, 2019, 01-24, Volume: 123, Issue:3

    The understanding of amyloid β-peptide (Aβ) interactions with cellular membranes is a crucial molecular challenge against Alzheimer's disease. Indeed, Aβ prefibrillar oligomeric intermediates are believed to be the most toxic species, able to induce cellular damages directly by membrane damage. We present a neutron-scattering study on the interaction of large unilamellar vesicles (LUV), as cell membrane models, with both freshly dissolved Aβ and early toxic prefibrillar oligomers, intermediate states in the amyloid pathway. In addition, we explore the effect of coincubating the Aβ-peptide with the chaperonin Hsp60, which is known to strongly interact with it in its aggregation pattern. In fact, the interaction of the LUV with coincubated Aβ/Hsp60, right after mixing and after following the aggregation protocol leading to the toxic intermediates in the absence of Hsp60, is studied. Neutron spin echo experiments show that the interaction with both freshly dissolved and aggregate Aβ species brings about an increase in membrane stiffness, whereas the presence of even very low amounts of Hsp60 (ratio Aβ/Hsp60 = 25:1) maintains unaltered the elastic properties of the membrane bilayer. A coherent interpretation of these results, related to previous literature, can be based on the ability of the chaperonin to interfere with Aβ aggregation, by the specific recognition of the Aβ-reactive transient species. In this framework, our results strongly suggest that early in a freshly dissolved Aβ solution are present some species able to modify the bilayer dynamics, and the chaperonin plays the role of an assistant in such stochastic "misfolding events", avoiding the insult on the membrane as well as the onset of the aggregation cascade.

    Topics: Amyloid beta-Peptides; Animals; Cattle; Chaperonin 60; Gangliosides; Lipid Bilayers; Peptide Fragments; Phosphatidylcholines; Phosphatidylserines; Protein Multimerization; Unilamellar Liposomes

2019
Fluorescence quenching by lipid encased nanoparticles shows that amyloid-β has a preferred orientation in the membrane.
    Chemical communications (Cambridge, England), 2018, Jul-10, Volume: 54, Issue:56

    Short range plasmonic fields around a nanoparticle can modulate fluorescence or Raman processes. In lipid encased nanoparticles, this can potentially measure the relative depths of different parts of a membrane protein from the surface. We employ this technique to discover that membrane inserted amyloid-β oligomers have a preferred molecular orientation.

    Topics: Amyloid beta-Peptides; Cholesterol; Fluoresceins; Fluorescence; Fluorescent Dyes; Lipid Bilayers; Metal Nanoparticles; Peptide Fragments; Phosphatidylcholines; Phosphatidylglycerols; Silver; Spectrometry, Fluorescence; Spectrum Analysis, Raman

2018
Amyloid-β Peptide Triggers Membrane Remodeling in Supported Lipid Bilayers Depending on Their Hydrophobic Thickness.
    Langmuir : the ACS journal of surfaces and colloids, 2018, 08-14, Volume: 34, Issue:32

    Amyloid-β (Aβ) peptide has been implicated in Alzheimer's disease, which is a leading cause of death worldwide. The interaction of Aβ peptides with the lipid bilayers of neuronal cells is a critical step in disease pathogenesis. Recent evidence indicates that lipid bilayer thickness influences Aβ membrane-associated aggregation, while understanding how Aβ interacts with lipid bilayers remains elusive. To address this question, we employed supported lipid bilayer (SLB) platforms composed of different-length phosphatidylcholine (PC) lipids (C12:0 DLPC, C18:1 DOPC, C18:1-C16:0 POPC), and characterized the resulting interactions with soluble Aβ monomers. Quartz crystal microbalance-dissipation (QCM-D) experiments identified concentration-dependent Aβ peptide adsorption onto all tested SLBs, which was corroborated by fluorescence recovery after photobleaching (FRAP) experiments indicating that higher Aβ concentrations led to decreased membrane fluidity. These commonalities pointed to strong Aβ peptide-membrane interactions in all cases. Notably, time-lapsed fluorescence microscopy revealed major differences in Aβ-induced membrane morphological responses depending on SLB hydrophobic thickness. For thicker DOPC and POPC SLBs, membrane remodeling involved the formation of elongated tubule and globular structures as a passive means to regulate membrane stress depending on Aβ concentration. In marked contrast, thin DLPC SLBs were not able to accommodate extensive membrane remodeling. Taken together, our findings reveal that membrane thickness influences the membrane morphological response triggered upon Aβ adsorption.

    Topics: Amyloid beta-Peptides; Hydrophobic and Hydrophilic Interactions; Lipid Bilayers; Membrane Fluidity; Microscopy, Fluorescence; Peptide Fragments; Phosphatidylcholines; Quartz Crystal Microbalance Techniques

2018
Model membrane size-dependent amyloidogenesis of Alzheimer's amyloid-β peptides.
    Physical chemistry chemical physics : PCCP, 2017, Jun-21, Volume: 19, Issue:24

    We herein report the mechanism of amyloid formation of amyloid-β (Aβ) peptides on small (SUV) and large unilamellar vesicles (LUVs), which consist of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids. Although Aβ

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Calorimetry; Circular Dichroism; Humans; Kinetics; Microscopy, Atomic Force; Peptide Fragments; Phosphatidylcholines; Unilamellar Liposomes

2017
An early folding contact between Phe19 and Leu34 is critical for amyloid-β oligomer toxicity.
    ACS chemical neuroscience, 2015, Aug-19, Volume: 6, Issue:8

    Small hydrophobic oligomers of aggregation-prone proteins are thought to be generically toxic. Here we examine this view by perturbing an early folding contact between Phe19 and Leu34 formed during the aggregation of Alzheimer's amyloid-β (Aβ40) peptide. We find that even conservative single mutations altering this interaction can abolish Aβ40 toxicity. Significantly, the mutants are not distinguishable either by the oligomers size or by the end-state fibrillar structure from the wild type Aβ40. We trace the change in their toxicity to a drastic lowering of membrane affinity. Therefore, nonlocal folding contacts play a key role in steering the oligomeric intermediates through specific conformations with very different properties and toxicity levels. Our results suggest that engineering the folding energy landscape may provide an alternative route to Alzheimer therapeutics.

    Topics: Amyloid beta-Peptides; Animals; Cell Survival; Cells, Cultured; Cerebral Cortex; Membranes, Artificial; Mutation; Neurons; Peptide Fragments; Phosphatidylcholines; Phosphatidylglycerols; Protein Folding; Rats, Wistar; Unilamellar Liposomes

2015
Analytical model and multiscale simulations of Aβ peptide aggregation in lipid membranes: towards a unifying description of conformational transitions, oligomerization and membrane damage.
    Physical chemistry chemical physics : PCCP, 2013, Jun-21, Volume: 15, Issue:23

    The mechanisms underlying the formation of extracellular amyloid plaques on neuronal membranes, a major hallmark of Alzheimer's disease, are the subject of intense debate. Here we use multiscale simulations and analytical theory to unveil the early steps of the spontaneous self-assembly of membrane-embedded α-helical Aβ (1-40) peptides. Based on a simple analytical model describing the electrostatic repulsions among water-exposed charged residues, the presence of distorted structures called "frustrated helices" is predicted. Large scale (20 μs) Coarse Grained simulations of 36 replicas of Aβ (1-40) performed within a POPC lipid matrix confirmed the formation of supramolecular assemblies which resemble a twisted ribbon. Fully atomistic simulations have demonstrated the stability of these helical structures. Concomitant to the formation of these large assemblies, CG simulations evidenced membrane curvature and substantiate the view that these assemblies may entail mechanical stress on membrane structure. We think that these findings provide an alternative view to the traditional models that consider a conformational transition towards β-sheet rich structures as a prerequisite for triggering membrane damage and, eventually, neurotoxicity.

    Topics: Amyloid beta-Peptides; Cell Membrane; Humans; Lipid Bilayers; Molecular Dynamics Simulation; Peptide Fragments; Phosphatidylcholines; Protein Structure, Secondary; Thermodynamics

2013
Different effects of Alzheimer's peptide Aβ(1-40) oligomers and fibrils on supported lipid membranes.
    Biophysical chemistry, 2013, Dec-01, Volume: 182

    Beta-amyloid (1-40) is one of the two most abundant species of amyloid-beta peptides present as fibrils in the extracellular senile plaques in the brain of Alzheimer's patients. Recently, the molecular aggregates constituting the early stage of fibril formation, i.e., oligomers and protofibrils, have been investigated as the main responsible for amyloid-beta cytotoxic effect. The molecular mechanism leading to neurodegeneration is still under debate, and it is common opinion that it may reside in the interaction between amyloid species and the neural membrane. In this investigation Atomic Force Microscopy and spectroscopy have been used to understand how structural (and mechanical) properties of POPC/POPS lipid bilayers, simulating the phospholipid composition and negative net charge of neuritic cell membranes, are influenced by the interaction with Aβ(1-40), in different stages of the peptide aggregation. Substantial differences in the damage caused to the lipid bilayers have been observed, confirming the toxic effect exerted especially by Aβ(1-40) prefibrillar oligomers.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Cell Membrane; Humans; Lipid Bilayers; Microscopy, Atomic Force; Neurons; Peptide Fragments; Phosphatidylcholines; Phosphatidylserines

2013
Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.
    Colloids and surfaces. B, Biointerfaces, 2011, Oct-15, Volume: 87, Issue:2

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms.

    Topics: Adsorption; Alzheimer Disease; Amyloid beta-Peptides; Animals; Cattle; Chemistry, Physical; Cholesterol; Humans; Hydrogen-Ion Concentration; Liposomes; Membrane Microdomains; Peptide Fragments; Phosphatidylcholines; Phosphatidylglycerols; Plaque, Amyloid; Protein Structure, Secondary; Spectrum Analysis; Sphingolipids; Static Electricity; Surface Properties

2011
Impact of phospholipid bilayer saturation on amyloid-beta protein aggregation intermediate growth: a quartz crystal microbalance analysis.
    Analytical biochemistry, 2010, Apr-01, Volume: 399, Issue:1

    Evidence that membrane-associated amyloid aggregate growth can impart membrane damage represents one possible mechanism for the neurodegeneration associated with deposited amyloid-beta protein (Abeta) aggregates in the brains of Alzheimer's disease (AD) patients. This potential pathogenic event necessitates an understanding of the impact that cellular membrane composition may have on Abeta aggregate growth. In the current study, a quartz crystal microbalance (QCM) was employed to examine the growth of Abeta(1-40) aggregation intermediates on supported phospholipid bilayers (SPBs) assembled at the crystal surface. These surface-specific measurements illustrate that zwitterionic SPBs selectively bind aggregated but not monomeric protein, and these bound aggregates are capable of supporting nonsaturable reversible growth via monomer addition. Growth-capable Abeta(1-40) aggregation intermediates more readily bind SPBs composed of phospholipids with a greater degree of carbon saturation. Furthermore, kinetic analysis afforded by the quantitative real-time QCM measurements reveals that SPBs with greater saturation also better support the growth of bound Abeta(1-40) aggregation intermediates as a result of the slower dissociation of bound monomer rather than more efficient recognition between aggregate and monomeric protein. These findings correlate with epidemiological and experimental evidence that links increased dietary intake of polyunsaturated fatty acids to a reduced risk of AD.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Fatty Acids; Lipid Bilayers; Liposomes; Peptide Fragments; Phenylenediamines; Phosphatidylcholines; Phospholipids; Quartz

2010
Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes.
    Biochemistry, 1997, Dec-02, Volume: 36, Issue:48

    The beta-amyloid peptide beta AP(1-40), a 40-amino acid residues peptide, is one of the major components of Alzheimer's amyloid deposits. beta AP(1-40) exhibits only a limited solubility in aqueous solution and undergoes a concentration-dependent, cooperative random coil reversible beta-structure transition for Cpep > 10 microM [Terzi, E., Hölzemann, G., and Seelig, J. (1995) J. Mol. Biol. 252, 633-642]. In the presence of acidic lipid, the equilibrium is shifted further toward beta-structured aggregates. We have now characterized the lipid-peptide interaction using circular dichroism (CD) spectroscopy, lipid monolayers, and deuterium and phosphorus-31 solid-state nuclear magnetic resonance (NMR). CD spectroscopy revealed a distinct interaction between beta AP(1-40) and negatively charged unilamellar vesicles. In addition to the random coil reversible beta-structured aggregate equilibrium at low lipid-to-peptide (L/P) ratios, a beta-structure -->alpha-helix transition was observed at L/P > 55. beta AP(1-40) was found to insert into acidic monolayers provided the lateral pressure was low (20 mN/m). The extent of incorporation increased distinctly with the content of acidic lipid in the monolayer. However, at a lipid packing density equivalent to that of a bilayer (lateral pressure > or = 32 mN/m), no insertion of beta AP(1-40) was observed. The lipid molecular structure in the presence of beta AP(1-40) was studied with NMR. Phosphatidylcholine (PC) was selectively deuterated at the choline headgroup and at the cis-double bond of the oleic acyl chain and mixed with phosphatidylglycerol (PG). Phosphorus-31 NMR showed that the lipid phase retained the bilayer structure at all lipid-to-protein ratios. Deuterium NMR revealed no change in the headgroup conformation of the choline moiety or in the flexibility and ordering of the hydrocarbon chains upon the addition of beta AP-(1-40). It can be concluded that beta AP(1-40) binds electrostatically to the outer envelope of the polar headgroup region without penetrating between the polar groups. The data suggest a new mechanism of helix formation induced by the proper alignment of five positive charges of beta AP(1-40) on the negatively charged membrane template.

    Topics: Amino Acid Sequence; Amyloid beta-Peptides; Circular Dichroism; Deuterium; Membranes, Artificial; Molecular Sequence Data; Nuclear Magnetic Resonance, Biomolecular; Peptide Fragments; Phosphatidylcholines; Phosphatidylglycerols; Phosphorus Isotopes; Protein Binding; Protein Structure, Secondary

1997