amyloid-beta-peptides has been researched along with 1-2-oleoylphosphatidylcholine* in 5 studies
5 other study(ies) available for amyloid-beta-peptides and 1-2-oleoylphosphatidylcholine
Article | Year |
---|---|
Amyloid-β Peptide Triggers Membrane Remodeling in Supported Lipid Bilayers Depending on Their Hydrophobic Thickness.
Amyloid-β (Aβ) peptide has been implicated in Alzheimer's disease, which is a leading cause of death worldwide. The interaction of Aβ peptides with the lipid bilayers of neuronal cells is a critical step in disease pathogenesis. Recent evidence indicates that lipid bilayer thickness influences Aβ membrane-associated aggregation, while understanding how Aβ interacts with lipid bilayers remains elusive. To address this question, we employed supported lipid bilayer (SLB) platforms composed of different-length phosphatidylcholine (PC) lipids (C12:0 DLPC, C18:1 DOPC, C18:1-C16:0 POPC), and characterized the resulting interactions with soluble Aβ monomers. Quartz crystal microbalance-dissipation (QCM-D) experiments identified concentration-dependent Aβ peptide adsorption onto all tested SLBs, which was corroborated by fluorescence recovery after photobleaching (FRAP) experiments indicating that higher Aβ concentrations led to decreased membrane fluidity. These commonalities pointed to strong Aβ peptide-membrane interactions in all cases. Notably, time-lapsed fluorescence microscopy revealed major differences in Aβ-induced membrane morphological responses depending on SLB hydrophobic thickness. For thicker DOPC and POPC SLBs, membrane remodeling involved the formation of elongated tubule and globular structures as a passive means to regulate membrane stress depending on Aβ concentration. In marked contrast, thin DLPC SLBs were not able to accommodate extensive membrane remodeling. Taken together, our findings reveal that membrane thickness influences the membrane morphological response triggered upon Aβ adsorption. Topics: Amyloid beta-Peptides; Hydrophobic and Hydrophilic Interactions; Lipid Bilayers; Membrane Fluidity; Microscopy, Fluorescence; Peptide Fragments; Phosphatidylcholines; Quartz Crystal Microbalance Techniques | 2018 |
Familial Alzheimer's disease Osaka mutant (ΔE22) β-barrels suggest an explanation for the different Aβ1-40/42 preferred conformational states observed by experiment.
An unusual ΔE693 mutation in the amyloid precursor protein (APP) producing a β-amyloid (Aβ) peptide lacking glutamic acid at position 22 (Glu22) was recently discovered, and dabbed the Osaka mutant (ΔE22). Previously, several point mutations in the Aβ peptide involving Glu22 substitutions were identified and implicated in the early onset of familial Alzheimer's disease (FAD). Despite the absence of Glu22, the Osaka mutant is also associated with FAD, showing a recessive inheritance in families affected by the disease. To see whether this aggregation-prone Aβ mutant could directly relate to the Aβ ion channel-mediated mechanism as observed for the wild type (WT) Aβ peptide in AD pathology, we modeled Osaka mutant β-barrels in a lipid bilayer. Using molecular dynamics (MD) simulations, two conformer ΔE22 barrels with the U-shaped monomer conformation derived from NMR-based WT Aβ fibrils were simulated in explicit lipid environment. Here, we show that the ΔE22 barrels obtain the lipid-relaxed β-sheet channel topology, indistinguishable from the WT Aβ1-42 barrels, as do the outer and pore dimensions of octadecameric (18-mer) ΔE22 barrels. Although the ΔE22 barrels lose the cationic binding site in the pore which is normally provided by the negatively charged Glu22 side chains, the mutant pores gain a new cationic binding site by Glu11 at the lower bilayer leaflet, and exhibit ion fluctuations similar to the WT barrels. Of particular interest, this deletion mutant suggests that toxic WT Aβ1-42 would preferentially adopt a less C-terminal turn similar to that observed for Aβ17-42, and explains why the solid state NMR data for Aβ1-40 point to a more C-terminal turn conformation. The observed ΔE22 barrels conformational preferences also suggest an explanation for the lower neurotoxicity in rat primary neurons as compared to WT Aβ1-42. Topics: Alzheimer Disease; Amino Acid Sequence; Amyloid; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Binding Sites; Humans; Hydrophobic and Hydrophilic Interactions; Lipid Bilayers; Molecular Dynamics Simulation; Peptide Fragments; Phosphatidylcholines; Protein Conformation; Protein Structure, Secondary; Sequence Deletion | 2013 |
Differing modes of interaction between monomeric Aβ(1-40) peptides and model lipid membranes: an AFM study.
Membrane interactions with β-amyloid peptides are implicated in the pathology of Alzheimer's disease and cholesterol has been shown to be key modulator of this interaction, yet little is known about the mechanism of this interaction. Using atomic force microscopy, we investigated the interaction of monomeric Aβ(1-40) peptides with planar mica-supported bilayers composed of DOPC and DPPC containing varying concentrations of cholesterol. We show that below the bilayer melting temperature, Aβ monomers adsorb to, and assemble on, the surface of DPPC bilayers to form layers that grow laterally and normal to the bilayer plane. Above the bilayer melting temperature, we observe protofibril formation. In contrast, in DOPC bilayers, Aβ monomers exhibit a detergent-like action, forming defects in the bilayer structure. The kinetics of both modes of interaction significantly increases with increasing membrane cholesterol content. We conclude that the mode and rate of the interaction of Aβ monomers with lipid bilayers are strongly dependent on lipid composition, phase state and cholesterol content. Topics: 1,2-Dipalmitoylphosphatidylcholine; Alzheimer Disease; Amyloid beta-Peptides; Cholesterol; Humans; Lipid Bilayers; Microscopy, Atomic Force; Peptide Fragments; Phosphatidylcholines | 2012 |
Real-time observation of model membrane dynamics induced by Alzheimer's amyloid beta.
Amyloid beta (Abeta) has been strongly implicated in inducing neurotoxicity in the pathology of Alzheimer's disease (AD). However, the underlying mechanisms remain unknown. In this study, we examined, in real-time, the spatio-temporal changes in individual model membranes induced by the presence of different Abeta-40 molecular assemblies (species). We used cell-sized lipid vesicles to enable the direct observation of these changes. We found three significantly different membrane-transformation pathways. We characterized the biophysical mechanisms behind these transformations in terms of the change in inner vesicle volume and surface area. Oligomeric Abeta exhibited the highest tendency to cause membrane fluctuation and transformations. Interestingly, mature fibrils, which are often considered inert species, also induced profound membrane changes. Furthermore, we imaged the localization of pre-fibrillar species on membranes. The real-time observation of these morphological transformations, which can be missed in a discretised analysis, may help to unlock the mechanisms of AD's Abeta-induced neuro-degeneration. Topics: Alzheimer Disease; Amyloid beta-Peptides; Peptide Fragments; Phosphatidylcholines; Unilamellar Liposomes | 2010 |
Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid Abeta(1-40) peptide in solid-supported lipid bilayers.
We utilized plasmon-waveguide resonance (PWR) spectroscopy to follow the effects of sphingomyelin, cholesterol and zinc ions on the binding and aggregation of the amyloid beta peptide(1-40) in lipid bilayers. With a dioleoylphosphatidylcholine (DOPC) bilayer, peptide binding was observed, but no aggregation occurred over a period of 15 h. In contrast, similar binding was found with a brain sphingomyelin (SM) bilayer, but in this case an exponential aggregation process was observed during the same time interval. When the SM bilayer included 35% cholesterol, an increase of approximately 2.5-fold occurred in the amount of peptide bound, with a similar increase in the extent of aggregation, the latter resulting in decreases in the bilayer packing density and displacement of lipid. Peptide association with a bilayer formed from equimolar amounts of DOPC, SM and cholesterol was followed using a high-resolution PWR sensor that allowed microdomains to be observed. Biphasic binding to both domains occurred, but predominantly to the SM-rich domain, initially to the surface and at higher peptide concentrations within the interior of the bilayer. Again, aggregation was observed and occurred within both microdomains, resulting in lipid displacement. We attribute the aggregation in the DOPC-enriched domain to be a consequence of lipid mixing within these microdomains, resulting in the presence of small amounts of SM and cholesterol in the DOPC microdomain. When 1 mM zinc was present, an increase of approximately threefold in the amount of peptide association was observed, as well as large changes in mass and bilayer structure as a consequence of peptide aggregation, occurring without loss of bilayer integrity. A structural interpretation of peptide interaction with the bilayer is presented based on the results of simulation analysis of the PWR spectra. Topics: Amyloid beta-Peptides; Cholesterol; Lipid Bilayers; Peptide Fragments; Peptides; Phosphatidylcholines; Protein Binding; Spectrum Analysis; Sphingomyelins; Zinc | 2006 |