Page last updated: 2024-08-17

ampicillin and pyrimethamine

ampicillin has been researched along with pyrimethamine in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (16.67)29.6817
2010's5 (83.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Lombardo, F; Obach, RS; Waters, NJ1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL1
Doshi, H; Ray, A; Thakkar, SS; Thakor, P1
Doshi, H; Ray, A; Thakkar, SS; Thakkar, VR; Thakor, P1

Reviews

1 review(s) available for ampicillin and pyrimethamine

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

5 other study(ies) available for ampicillin and pyrimethamine

ArticleYear
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
    PloS one, 2016, Volume: 11, Issue:10

    Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat

2016
1,2,4-Triazole and 1,3,4-oxadiazole analogues: Synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities.
    Bioorganic & medicinal chemistry, 2017, 08-01, Volume: 25, Issue:15

    Topics: Anti-Infective Agents; Antimalarials; Folic Acid Antagonists; Molecular Docking Simulation; Oxadiazoles; Spectrum Analysis; Triazoles

2017
Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities.
    Bioorganic & medicinal chemistry, 2017, 10-15, Volume: 25, Issue:20

    Topics: Anti-Bacterial Agents; Antifungal Agents; Antimalarials; Benzothiazoles; Cell Survival; Computer Simulation; Dose-Response Relationship, Drug; Folic Acid Antagonists; Gram-Negative Bacteria; Gram-Positive Bacteria; Microbial Sensitivity Tests; Molecular Structure; Plasmodium falciparum; Quantum Theory; Schizosaccharomyces; Structure-Activity Relationship; Tetrahydrofolate Dehydrogenase

2017