amiloride has been researched along with deferoxamine in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (28.57) | 18.2507 |
2000's | 3 (42.86) | 29.6817 |
2010's | 2 (28.57) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Faller, B; Wohnsland, F | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Fink, MP; Menconi, MJ; Unno, N | 1 |
Aksentsev, SL; Hamet, P; Orlov, SN; Pokudin, NI; Tremblay, J | 1 |
Amoroso, S; Annunziato, L; Catalano, A; Di Renzo, G; Montagnani, S; Secondo, A; Tortiglione, A | 1 |
Byczko, Z; Horackova, M; Ponka, P | 1 |
1 review(s) available for amiloride and deferoxamine
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
6 other study(ies) available for amiloride and deferoxamine
Article | Year |
---|---|
High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes.
Topics: Alkanes; Humans; Hydrogen-Ion Concentration; Intestinal Absorption; Membranes, Artificial; Octanols; Permeability; Pharmaceutical Preparations; Solubility; Water | 2001 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Nitric oxide-induced hyperpermeability of human intestinal epithelial monolayers is augmented by inhibition of the amiloride-sensitive Na(+)-H+ antiport: potential role of peroxynitrous acid.
Topics: Amiloride; Cell Membrane Permeability; Colonic Neoplasms; Deferoxamine; Humans; Intestinal Mucosa; Membrane Potentials; Molsidomine; Nitrates; Nitric Oxide; Nitrous Acid; Peroxynitrous Acid; Sodium-Hydrogen Exchangers; Superoxides; Tumor Cells, Cultured | 1997 |
Na+/H+ exchange in vascular smooth muscle cells is controlled by GTP-binding proteins.
Topics: Aluminum Chloride; Aluminum Compounds; Amiloride; Animals; Aorta; Biological Transport; Calcium; Cell Membrane Permeability; Cells, Cultured; Chlorides; Cyclic AMP; Deferoxamine; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Hydrogen-Ion Concentration; Isoproterenol; Kinetics; Male; Muscle, Smooth, Vascular; Oligonucleotides, Antisense; Potassium; Rats; Rats, Inbred BN; Sodium; Sodium Fluoride; Thionucleotides | 1998 |
Sodium nitroprusside prevents chemical hypoxia-induced cell death through iron ions stimulating the activity of the Na+-Ca2+ exchanger in C6 glioma cells.
Topics: 8-Bromo Cyclic Adenosine Monophosphate; Amiloride; Animals; Bepridil; Calcium; Calcium Channel Blockers; Cell Hypoxia; Cell Survival; Chelating Agents; Chlorides; Deferoxamine; Enzyme Activation; Extracellular Space; Ferric Compounds; Ferricyanides; Fluoresceins; Glioma; L-Lactate Dehydrogenase; Molsidomine; Nitric Oxide; Nitroprusside; Sodium; Sodium Channels; Sodium-Calcium Exchanger; Staining and Labeling; Tetrodotoxin; Tumor Cells, Cultured; Vasodilator Agents | 2000 |
The antioxidant effects of a novel iron chelator salicylaldehyde isonicotinoyl hydrazone in the prevention of H(2)O(2) injury in adult cardiomyocytes.
Topics: Action Potentials; Aldehydes; Amiloride; Animals; Calcium Channels; Cell Size; Cells, Cultured; Deferoxamine; Guinea Pigs; Hydrazones; Hydrogen Peroxide; Iron Chelating Agents; Myocardium; Oxidative Stress; Patch-Clamp Techniques; Sodium-Hydrogen Exchangers | 2000 |