am-356 and palmidrol

am-356 has been researched along with palmidrol* in 5 studies

Other Studies

5 other study(ies) available for am-356 and palmidrol

ArticleYear
Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2008, Dec-17, Volume: 28, Issue:51

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

    Topics: Amides; Amidohydrolases; Animals; Appetite Depressants; Arachidonic Acids; Benzamides; Cannabinoid Receptor Antagonists; Carbamates; Dopamine; Endocannabinoids; Enzyme Activation; Enzyme Inhibitors; Ethanolamines; Injections, Intraventricular; Lipoxygenase Inhibitors; Male; Neurons; Nicotine; Oleic Acids; Organ Culture Techniques; Palmitic Acids; Patch-Clamp Techniques; Piperidines; PPAR alpha; Protein-Tyrosine Kinases; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Rimonabant; Ventral Tegmental Area

2008
Non-cannabinoid CB1, non-cannabinoid CB2 antinociceptive effects of several novel compounds in the PPQ stretch test in mice.
    European journal of pharmacology, 2006, Sep-28, Volume: 546, Issue:1-3

    The analgesic and anti-hyperalgesic effects of cannabinoid- and vanilloid-like compounds, plus the fatty acid amide hydrolase (FAAH) inhibitor Cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597), and acetaminophen, were evaluated in the phenyl-p-quinone (PPQ) pain model, using different routes of administration in combination with opioid and cannabinoid receptor antagonists. All the compounds tested produced analgesic effects. Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and (R)-(+)-arachidonyl-1'-hydroxy-2'-propylamide ((R)-methanandamide) were active by three routes of administration: i.p., s.c. and, p.o. Delta(9)-THC produced ED(50)s of 2.2 mg/kg (0.3-15.6) i.p., 9 mg/kg (4.3-18.9) s.c., and 6.4 mg/kg (5.5-7.6) p.o. Similarly, (R)-methanandamide yielded ED(50)s of 2.9 mg/kg (1-8) i.p., 11 mg/kg (7-17) s.c., and 11 mg/kg (0.9-134) p.o. N-vanillyl-arachidonyl-amide (arvanil) was active by two routes, producing ED(50)s of 4.7 mg/kg (3.0-7.4) s.c. and 0.06 mg/kg (0.02-0.2) i.p. Palmitoylethanolamide, URB597, and acetaminophen were active i.p., resulting in ED(50)s of 3.7 mg/kg (3.2-4.2), 22.9 mg/kg (11.1-47.2), and 160 mg/kg (63-405), respectively. None of the cannabinoid or opioid receptor antagonists tested blocked the compounds evaluated, with two exceptions: the antinociceptive effects of Delta(9)-THC and URB597 were completely blocked by SR141716A, a cannabinoid CB(1) receptor antagonist. Western immunoassays performed using three opioid receptor antibodies, a cannabinoid CB(1) receptor antibody and a transient receptor potential vanilloid type 1(TRPV(1)) receptor antibody, yielded no change in receptor protein levels after short-term arvanil, (R)-methanandamide or Delta(9)-THC administration. These data suggest that all the compounds tested, except Delta(9)-THC and URB597, produced analgesia via a non-cannabinoid CB(1), non-cannabinoid CB(2) pain pathway not yet identified.

    Topics: Acetaminophen; Amides; Analgesics; Animals; Arachidonic Acids; Benzamides; Benzoquinones; Camphanes; Capsaicin; Carbamates; Dose-Response Relationship, Drug; Dronabinol; Endocannabinoids; Ethanolamines; Hyperalgesia; Male; Mesencephalon; Mice; Mice, Inbred ICR; Narcotic Antagonists; Pain; Palmitic Acids; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Opioid; Rimonabant; Spinal Cord; TRPV Cation Channels

2006
Effects of the cannabimimetic fatty acid derivatives 2-arachidonoylglycerol, anandamide, palmitoylethanolamide and methanandamide upon IgE-dependent antigen-induced beta-hexosaminidase, serotonin and TNF alpha release from rat RBL-2H3 basophilic leukaemic
    Naunyn-Schmiedeberg's archives of pharmacology, 2001, Volume: 364, Issue:1

    There are conflicting reports in the literature as to whether palmitoylethanolamide affects the function of mast cell-related cell lines in vitro, in contrast to the well-documented effects of this compound upon mast cell function in vivo. In the present study, we have reinvestigated the effects of palmitoylethanolamide upon antigen-induced release of [3H]serotonin and beta-hexosaminidase from rat basophilic leukemia RBL-2H3 cells and compared these effects with those of 2-arachidonoylglycerol, anandamide and R1-methanandamide. RBL-2H3 cells were sensitized with a monoclonal anti-DNP IgE, after which they were stimulated with antigen (DNP-HSA). Palmitoylethanolamide produced a small, but significant reduction in antigen-stimulated [3H]serotonin release at high concentrations, whereas anandamide was without effect. In contrast, 2-arachidonoylglycerol and methanandamide increased the antigen-stimulated release of both [3H]serotonin and beta-hexosaminidase. It is concluded that in RBL-2H3 cells, these cannabimimetic fatty acid derivatives do not have potent stabilizing effects upon antigen-induced degranulation.

    Topics: Adjuvants, Immunologic; Amides; Animals; Arachidonic Acids; beta-N-Acetylhexosaminidases; Endocannabinoids; Enzyme Induction; Ethanolamines; Glycerides; Immunoglobulin E; Inflammation Mediators; Leukemia; Ligands; Mast Cells; Palmitic Acids; Polyunsaturated Alkamides; Rats; Serotonin; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha

2001
Mechanisms of anandamide-induced vasorelaxation in rat isolated coronary arteries.
    British journal of pharmacology, 2001, Volume: 134, Issue:4

    1. The cannabinoid arachidonyl ethanolamide (anandamide) caused concentration-dependent relaxation of 5-HT-precontracted, myograph-mounted, segments of rat left anterior descending coronary artery. 2. This relaxation was endothelium-independent, unaffected by the fatty acid amide hydrolase inhibitor, arachidonyl trifluoromethyl ketone (10 microM), and mimicked by the non-hydrolysable anandamide derivative, methanandamide. 3. Relaxations to anandamide were attenuated by the cannabinoid receptor antagonist, SR 141716A (3 microM), but unaffected by AM 251 (1 microM) and AM 630 (1 microM), more selective antagonists of cannabinoid CB(1) and CB(2) receptors respectively. Palmitoylethanolamide, a selective CB(2) receptor agonist, did not relax precontracted coronary arteries. 4. Anandamide relaxations were not affected by inhibition of sensory nerve transmission with capsaicin (10 microM) or blockade of vanilloid VR1 receptors with capsazepine (5 microM). Nevertheless capsaicin relaxed coronary arteries in a concentration-dependent and capsazepine-sensitive manner, confirming functional sensory nerves were present. In contrast, capsazepine and capsaicin did inhibit anandamide relaxations in methoxamine-precontracted rat small mesenteric arteries. 5. Relaxations to anandamide were inhibited by TEA (1 mM) or iberiotoxin (50 nM), blockers of large conductance, Ca(2+)-activated K(+) channels (BK(Ca)). Gap junction inhibition with 18alpha-glycyrrhetinic acid (100 microM) did not affect anandamide relaxations. 6. This study shows anandamide relaxes the rat coronary artery by a novel mechanism. Anandamide-induced relaxations do not involve the endothelium, degradation into active metabolites, or activation of cannabinoid CB(1) or CB(2) receptors, but may involve activation of BK(Ca). Vanilloid receptor activation also has no role in the effects of anandamide in coronary arteries, even though functional sensory nerves are present.

    Topics: Amides; Animals; Arachidonic Acids; Capsaicin; Coronary Vessels; Dose-Response Relationship, Drug; Endocannabinoids; Endothelium, Vascular; Ethanolamines; Gap Junctions; Glycyrrhetinic Acid; In Vitro Techniques; Indoles; Indomethacin; Male; Palmitic Acids; Peptides; Piperidines; Polyunsaturated Alkamides; Potassium Channel Blockers; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Serotonin; Tetraethylammonium; Vasodilation

2001
The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1).
    British journal of pharmacology, 2000, Volume: 129, Issue:2

    The endogenous cannabinoid anandamide was identified as an agonist for the recombinant human VR1 (hVR1) by screening a large array of bioactive substances using a FLIPR-based calcium assay. Further electrophysiological studies showed that anandamide (10 or 100 microM) and capsaicin (1 microM) produced similar inward currents in hVR1 transfected, but not in parental, HEK293 cells. These currents were abolished by capsazepine (1 microM). In the FLIPR anandamide and capsaicin were full agonists at hVR1, with pEC(50) values of 5. 94+/-0.06 (n=5) and 7.13+/-0.11 (n=8) respectively. The response to anandamide was inhibited by capsazepine (pK(B) of 7.40+/-0.02, n=6), but not by the cannabinoid receptor antagonists AM630 or AM281. Furthermore, pretreatment with capsaicin desensitized the anandamide-induced calcium response and vice versa. In conclusion, this study has demonstrated for the first time that anandamide acts as a full agonist at the human VR1.

    Topics: Amides; Arachidonic Acids; Binding, Competitive; Calcium; Calcium Channels; Cannabinoids; Capsaicin; Cell Line; Cloning, Molecular; Electrophysiology; Endocannabinoids; Ethanolamines; Humans; Hydrogen-Ion Concentration; Palmitic Acids; Patch-Clamp Techniques; Polyunsaturated Alkamides; Receptors, Drug; Recombinant Proteins; TRPV Cation Channels

2000