am-281 and arachidonylcyclopropylamide

am-281 has been researched along with arachidonylcyclopropylamide* in 2 studies

Other Studies

2 other study(ies) available for am-281 and arachidonylcyclopropylamide

ArticleYear
Effects of cannabinoids on caffeine contractures in slow and fast skeletal muscle fibers of the frog.
    The Journal of membrane biology, 2009, Volume: 229, Issue:2

    The effect of cannabinoids on caffeine contractures was investigated in slow and fast skeletal muscle fibers using isometric tension recording. In slow muscle fibers, WIN 55,212-2 (10 and 5 microM) caused a decrease in tension. These doses reduced maximum tension to 67.43 +/- 8.07% (P = 0.02, n = 5) and 79.4 +/- 14.11% (P = 0.007, n = 5) compared to control, respectively. Tension-time integral was reduced to 58.37 +/- 7.17% and 75.10 +/- 3.60% (P = 0.002, n = 5), respectively. Using the CB(1) cannabinoid receptor agonist ACPA (1 microM) reduced the maximum tension of caffeine contractures by 68.70 +/- 11.63% (P = 0.01, n = 5); tension-time integral was reduced by 66.82 +/- 6.89% (P = 0.02, n = 5) compared to controls. When the CB(1) receptor antagonist AM281 was coapplied with ACPA, it reversed the effect of ACPA on caffeine-evoked tension. In slow and fast muscle fibers incubated with the pertussis toxin, ACPA had no effect on tension evoked by caffeine. In fast muscle fibers, ACPA (1 microM) also decreased tension; the maximum tension was reduced by 56.48 +/- 3.4% (P = 0.001, n = 4), and tension-time integral was reduced by 57.81 +/- 2.6% (P = 0.006, n = 4). This ACPA effect was not statistically significant with respect to the reduction in tension in slow muscle fibers. Moreover, we detected the presence of mRNA for the cannabinoid CB(1) receptor on fast and slow skeletal muscle fibers, which was significantly higher in fast compared to slow muscle fiber expression. In conclusion, our results suggest that in the slow and fast muscle fibers of the frog cannabinoids diminish caffeine-evoked tension through a receptor-mediated mechanism.

    Topics: Animals; Arachidonic Acids; Caffeine; Cannabinoids; Central Nervous System Stimulants; Morpholines; Muscle Contraction; Muscle Fibers, Fast-Twitch; Muscle Fibers, Skeletal; Muscle Fibers, Slow-Twitch; Pyrazoles; Rana pipiens; Receptor, Cannabinoid, CB1; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger

2009
Endocannabinoids mediate muscarine-induced synaptic depression at the vertebrate neuromuscular junction.
    The European journal of neuroscience, 2007, Volume: 25, Issue:6

    Endocannabinoids (eCBs) inhibit neurotransmitter release throughout the central nervous system. Using the Ceratomandibularis muscle from the lizard Anolis carolinensis we asked whether eCBs play a similar role at the vertebrate neuromuscular junction. We report here that the CB(1) cannabinoid receptor is concentrated on motor terminals and that eCBs mediate the inhibition of neurotransmitter release induced by the activation of M(3) muscarinic acetylcholine (ACh) receptors. N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide, a CB(1) antagonist, prevents muscarine from inhibiting release and arachidonylcyclopropylamide (ACPA), a CB(1) receptor agonist, mimics M(3) activation and occludes the effect of muscarine. As for its mechanism of action, ACPA reduces the action-potential-evoked calcium transient in the nerve terminal and this decrease is more than sufficient to account for the observed inhibition of neurotransmitter release. Similar to muscarine, the inhibition of synaptic transmission by ACPA requires nitric oxide, acting via the synthesis of cGMP and the activation of cGMP-dependent protein kinase. 2-Arachidonoylglycerol (2-AG) is responsible for the majority of the effects of eCB as inhibitors of phospholipase C and diacylglycerol lipase, two enzymes responsible for synthesis of 2-AG, significantly limit muscarine-induced inhibition of neurotransmitter release. Lastly, the injection of (5Z,8Z,11Z,14Z)-N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide (an inhibitor of eCB transport) into the muscle prevents muscarine, but not ACPA, from inhibiting ACh release. These results collectively lead to a model of the vertebrate neuromuscular junction whereby 2-AG mediates the muscarine-induced inhibition of ACh release. To demonstrate the physiological relevance of this model we show that the CB(1) antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide prevents synaptic inhibition induced by 20 min of 1-Hz stimulation.

    Topics: Animals; Arachidonic Acids; Calcium; Cannabinoid Receptor Modulators; Drug Interactions; Endocannabinoids; Enzyme Inhibitors; Inhibitory Postsynaptic Potentials; Lizards; Models, Biological; Morpholines; Muscarine; Muscarinic Agonists; Neuromuscular Junction; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1

2007