alprenolol has been researched along with griseofulvin in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (60.00) | 29.6817 |
2010's | 2 (40.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Gao, F; Lombardo, F; Shalaeva, MY; Tupper, KA | 1 |
Artursson, P; Bergström, CA; Draheim, R; Holmén, AG; Wassvik, CM | 1 |
Du-Cuny, L; Mash, EA; Meuillet, EJ; Moses, S; Powis, G; Song, Z; Zhang, S | 1 |
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K | 1 |
Barber, S; Dew, TP; Farrell, TL; Poquet, L; Williamson, G | 1 |
5 other study(ies) available for alprenolol and griseofulvin
Article | Year |
---|---|
ElogD(oct): a tool for lipophilicity determination in drug discovery. 2. Basic and neutral compounds.
Topics: 1-Octanol; Chromatography, High Pressure Liquid; Pharmaceutical Preparations; Solubility; Water | 2001 |
Molecular characteristics for solid-state limited solubility.
Topics: Chemical Phenomena; Chemistry, Physical; Molecular Structure; Multivariate Analysis; Pharmaceutical Preparations; Regression Analysis; Solubility | 2008 |
Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain.
Topics: Antineoplastic Agents; Blood Proteins; Caco-2 Cells; Cell Membrane Permeability; Computer Simulation; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Phosphoproteins; Protein Binding; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-akt; Quantitative Structure-Activity Relationship | 2009 |
QSAR-based permeability model for drug-like compounds.
Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2011 |
Predicting phenolic acid absorption in Caco-2 cells: a theoretical permeability model and mechanistic study.
Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Cinnamates; Enterocytes; Humans; Hydrophobic and Hydrophilic Interactions; Intestinal Absorption; Kinetics; Models, Biological; Molecular Conformation; Osmolar Concentration; Phenols | 2012 |