alpha-tocotrienol-quinone has been researched along with tocotrienol--alpha* in 2 studies
2 other study(ies) available for alpha-tocotrienol-quinone and tocotrienol--alpha
Article | Year |
---|---|
Identification of α-tocotrienolquinone epoxides and development of an efficient molecular distillation procedure for quantitation of α-tocotrienol oxidation products in food matrices by high-performance liquid chromatography with diode array and fluoresce
The aim of this study was to investigate the most important oxidation products of α-tocotrienol (α-T3) along with other tocochromanols in lipid matrices and tocotrienol-rich foods. For this purpose, an efficient molecular distillation procedure was developed for the extraction of analytes, and α-T3-spiked and thermally oxidized natural lipids (lard and wheat germ oil) and α-T3-rich foods (wholemeal rye bread and oil from dried brewer's spent grain) were investigated through HPLC-DAD-F. The following α-T3 oxidation products were extractable from lipid matrices along with tocochromanols: α-tocotrienolquinone (α-T3Q), α-tocotrienolquinone-4a,5-epoxide (α-T3Q-4a,5-E), α-tocotrienolquinone-7,8-epoxide (α-T3Q-7,8-E), 7-formyl-β-tocotrienol (7-FβT3), and 5-formyl-γ-tocotrienol (5-FγT3). Recovery rates were as high as 88% and enrichment factors up to 124. The proposed method allows the investigation of α-T3Q, α-T3Q-4a,5-E, α-T3Q-7,8-E, 7-FβT3, and 5-FγT3 in small quantities (<0.78 μg/g) in lipid matrices, which is necessary for the investigation and analysis of the formation kinetics of these oxidation products in fat, oils, and tocotrienol-rich foods. Topics: Bread; Chemical Fractionation; Chromatography, High Pressure Liquid; Distillation; Epoxy Compounds; Fluorescence; Food Analysis; Lipids; Oxidation-Reduction; Plant Oils; Reproducibility of Results; Tocotrienols; Ubiquinone | 2012 |
α-Tocotrienol quinone modulates oxidative stress response and the biochemistry of aging.
We report that α-tocotrienol quinone (ATQ3) is a metabolite of α-tocotrienol, and that ATQ3 is a potent cellular protectant against oxidative stress and aging. ATQ3 is orally bioavailable, crosses the blood-brain barrier, and has demonstrated clinical response in inherited mitochondrial disease in open label studies. ATQ3 activity is dependent upon reversible 2e-redox-cycling. ATQ3 may represent a broader class of unappreciated dietary-derived phytomolecular redox motifs that digitally encode biochemical data using redox state as a means to sense and transfer information essential for cellular function. Topics: Aging; Animals; Antioxidants; Benzoquinones; Cells, Cultured; Dogs; Dose-Response Relationship, Drug; Humans; Mice; Molecular Structure; Oxidative Stress; Rats; Tocotrienols; Vitamin E | 2011 |