alpha-synuclein has been researched along with swertiamarin* in 1 studies
1 other study(ies) available for alpha-synuclein and swertiamarin
Article | Year |
---|---|
Swertiamarin from Enicostemma littorale, counteracts PD associated neurotoxicity via enhancement α-synuclein suppressive genes and SKN-1/NRF-2 activation through MAPK pathway.
The elusive targets and the multifactorial etiology of Parkinson's disease (PD) have hampered the discovery of a potent drug for PD. Furthermore, the presently available medications provide only symptomatic relief and have failed to mitigate the pathogenesis associated with PD. Therefore, the current study was aimed to evaluate the prospective of swertiamarin (SW), a secoiridoid glycoside isolated from a traditional medicinal plant, Enicostemma littorale Blume to ameliorate the characteristic features of PD in Caenorhabditis elegans. SW (25 μM) administration decreased the α-synuclein (α-syn) deposition, inhibited apoptosis and increased dopamine level mediated through upregulating the expression of genes linked to ceramide synthesis, mitochondrial morphology and function regulation, fatty acid desaturase genes along with stress responsive MAPK (mitogen-activated protein kinase) pathway genes. The neuroprotective effect of SW was evident from the robust reduction of 6-hydroxydopamine (6-OHDA) induced dopaminergic neurodegeneration independent of dopamine transporter (dat-1). SW mediated translational regulation of MAPK pathway genes was observed through increase expression of SKN-1 and GST-4. Further, in-silico molecular docking analysis of SW with C. elegans MEK-1 showed a promising binding affinity affirming the in-vivo results. Overall, these novel finding supports that SW is a possible lead for drug development against the multi- factorial PD pathologies. Topics: alpha-Synuclein; Animals; Apoptosis; Caenorhabditis elegans; Caenorhabditis elegans Proteins; DNA-Binding Proteins; Dose-Response Relationship, Drug; Gentianaceae; Humans; Iridoid Glucosides; Molecular Structure; Neuroprotective Agents; Parkinson Disease; Pyrones; Signal Transduction; Structure-Activity Relationship; Transcription Factors | 2021 |