alpha-synuclein has been researched along with sphingosyl-beta-glucoside* in 5 studies
5 other study(ies) available for alpha-synuclein and sphingosyl-beta-glucoside
Article | Year |
---|---|
Neuronopathic GBA1L444P Mutation Accelerates Glucosylsphingosine Levels and Formation of Hippocampal Alpha-Synuclein Inclusions.
The most common genetic risk factor for Parkinson's disease (PD) is heterozygous mutations Topics: alpha-Synuclein; Animals; Glucosylceramidase; Hippocampus; Mice; Mutation; Parkinson Disease; Synucleinopathies | 2023 |
Progression of Behavioral and CNS Deficits in a Viable Murine Model of Chronic Neuronopathic Gaucher Disease.
To study the neuronal deficits in neuronopathic Gaucher Disease (nGD), the chronological behavioral profiles and the age of onset of brain abnormalities were characterized in a chronic nGD mouse model (9V/null). Progressive accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) in the brain of 9V/null mice were observed at as early as 6 and 3 months of age for GC and GS, respectively. Abnormal accumulation of α-synuclein was present in the 9V/null brain as detected by immunofluorescence and Western blot analysis. In a repeated open-field test, the 9V/null mice (9 months and older) displayed significantly less environmental habituation and spent more time exploring the open-field than age-matched WT group, indicating the onset of short-term spatial memory deficits. In the marble burying test, the 9V/null group had a shorter latency to initiate burying activity at 3 months of age, whereas the latency increased significantly at ≥12 months of age; 9V/null females buried significantly more marbles to completion than the WT group, suggesting an abnormal response to the instinctive behavior and an abnormal activity in non-associative anxiety-like behavior. In the conditional fear test, only the 9V/null males exhibited a significant decrease in response to contextual fear, but both genders showed less response to auditory-cued fear compared to age- and gender-matched WT at 12 months of age. These results indicate hippocampus-related emotional memory defects. Abnormal gait emerged in 9V/null mice with wider front-paw and hind-paw widths, as well as longer stride in a gender-dependent manner with different ages of onset. Significantly higher liver- and spleen-to-body weight ratios were detected in 9V/null mice with different ages of onsets. These data provide temporal evaluation of neurobehavioral dysfunctions and brain pathology in 9V/null mice that can be used for experimental designs to evaluate novel therapies for nGD. Topics: Acoustic Stimulation; Aging; alpha-Synuclein; Animals; Behavior, Animal; Conditioning, Psychological; Disease Models, Animal; Disease Progression; Exploratory Behavior; Fear; Female; Gait; Gaucher Disease; Glucosylceramidase; Glucosylceramides; Hippocampus; Male; Memory Disorders; Mice; Psychosine; Sex Factors; Spatial Memory | 2016 |
Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: potential role in neuropathology.
Gaucher disease (GD) is caused by insufficient activity of acid β-glucosidase (GCase) resulting from mutations in GBA1. To understand the pathogenesis of the neuronopathic GD, induced pluripotent stem cells (iPSCs) were generated from fibroblasts isolated from three GD type 2 (GD2) and 2 unaffected (normal and GD carrier) individuals. The iPSCs were converted to neural precursor cells (NPCs) which were further differentiated into neurons. Parental GD2 fibroblasts as well as iPSCs, NPCs, and neurons had similar degrees of GCase deficiency. Lipid analyses showed increases of glucosylsphingosine and glucosylceramide in the GD2 cells. In addition, GD2 neurons showed increased α-synuclein protein compared to control neurons. Whole cell patch-clamping of the GD2 and control iPSCs-derived neurons demonstrated excitation characteristics of neurons, but intriguingly, those from GD2 exhibited consistently less negative resting membrane potentials with various degree of reduction in action potential amplitudes, sodium and potassium currents. Culture of control neurons in the presence of the GCase inhibitor (conduritol B epoxide) recapitulated these findings, providing a functional link between decreased GCase activity in GD and abnormal neuronal electrophysiological properties. To our knowledge, this study is first to report abnormal electrophysiological properties in GD2 iPSC-derived neurons that may underlie the neuropathic phenotype in Gaucher disease. Topics: alpha-Synuclein; Cells, Cultured; Fibroblasts; Gaucher Disease; Glucosylceramidase; Glucosylceramides; Humans; Induced Pluripotent Stem Cells; Membrane Potentials; Neural Stem Cells; Neurogenesis; Neurons; Psychosine | 2015 |
Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies.
Mutations of GBA1, the gene encoding glucocerebrosidase, represent a common genetic risk factor for developing the synucleinopathies Parkinson disease (PD) and dementia with Lewy bodies. PD patients with or without GBA1 mutations also exhibit lower enzymatic levels of glucocerebrosidase in the central nervous system (CNS), suggesting a possible link between the enzyme and the development of the disease. Previously, we have shown that early treatment with glucocerebrosidase can modulate α-synuclein aggregation in a presymptomatic mouse model of Gaucher-related synucleinopathy (Gba1(D409V/D409V)) and ameliorate the associated cognitive deficit. To probe this link further, we have now evaluated the efficacy of augmenting glucocerebrosidase activity in the CNS of symptomatic Gba1(D409V/D409V) mice and in a transgenic mouse model overexpressing A53T α-synuclein. Adeno-associated virus-mediated expression of glucocerebrosidase in the CNS of symptomatic Gba1(D409V/D409V) mice completely corrected the aberrant accumulation of the toxic lipid glucosylsphingosine and reduced the levels of ubiquitin, tau, and proteinase K-resistant α-synuclein aggregates. Importantly, hippocampal expression of glucocerebrosidase in Gba1(D409V/D409V) mice (starting at 4 or 12 mo of age) also reversed their cognitive impairment when examined using a novel object recognition test. Correspondingly, overexpression of glucocerebrosidase in the CNS of A53T α-synuclein mice reduced the levels of soluble α-synuclein, suggesting that increasing the glycosidase activity can modulate α-synuclein processing and may modulate the progression of α-synucleinopathies. Hence, increasing glucocerebrosidase activity in the CNS represents a potential therapeutic strategy for GBA1-related and non-GBA1-associated synucleinopathies, including PD. Topics: alpha-Synuclein; Animals; Brain; Dependovirus; Disease Models, Animal; Gaucher Disease; Glucosylceramidase; Hippocampus; Humans; Memory; Mice; Mice, Transgenic; Parkinsonian Disorders; Protein Structure, Quaternary; Psychosine; tau Proteins | 2013 |
Accumulation and distribution of α-synuclein and ubiquitin in the CNS of Gaucher disease mouse models.
Gaucher disease, a prevalent lysosomal storage disease, is caused by insufficient activity of acid β-glucosidase (GCase) and resultant glucosylceramide accumulation. Recently in Parkinson disease (PD) patients, heterozygous mutations in GCase have been associated with earlier onset and more progressive PD. To understand the pathogenic relationships between GCase variants and Parkinsonism, α-synuclein and ubiquitin distributions and levels in the brains of several mouse models containing GCase variants were evaluated by immunohistochemistry. Progressive α-synuclein and ubiquitin aggregate accumulations were observed in the cortex, hippocampus, basal ganglia, brainstem, and some cerebellar regions between 4 and 24 weeks in mice that were homozygous for GCase [D409H (9H) or V394L (4L)] variants and also had a prosaposin hypomorphic (PS-NA) transgene. In 4L/PS-NA and 9H/PS-NA mice, this was coincident with progressive neurological manifestations and brain glucosylceramide accumulation. Ultrastructural studies showed electron dense inclusion bodies in neurons and axons of 9H/PS-NA brains. α-synuclein aggregates were also observed in ventricular, brainstem, and cerebellar regions of older mice (>42-weeks) with the GCase variant (D409H/D409H) without overt neurological disease. In a chemically induced GCase deficiency, α-synuclein aggregates and glucosylceramide accumulation also occurred. These studies demonstrate a relationship between glucosylceramide accumulation and α-synuclein aggregates, and implicate glucosylceramide accumulation as risk factor for the α-synucleinopathies. Topics: Age Factors; alpha-Synuclein; Animals; beta-Glucosidase; Brain; Disease Models, Animal; Gaucher Disease; Glucosylceramides; Inclusion Bodies; Inositol; Mice; Mutation, Missense; Phenotype; Psychosine; Ubiquitin | 2011 |