alpha-synuclein and olesoxime

alpha-synuclein has been researched along with olesoxime* in 3 studies

Other Studies

3 other study(ies) available for alpha-synuclein and olesoxime

ArticleYear
Molecular mechanism of olesoxime-mediated neuroprotection through targeting α-synuclein interaction with mitochondrial VDAC.
    Cellular and molecular life sciences : CMLS, 2020, Volume: 77, Issue:18

    An intrinsically disordered neuronal protein α-synuclein (αSyn) is known to cause mitochondrial dysfunction, contributing to loss of dopaminergic neurons in Parkinson's disease. Through yet poorly defined mechanisms, αSyn crosses mitochondrial outer membrane and targets respiratory complexes leading to bioenergetics defects. Here, using neuronally differentiated human cells overexpressing wild-type αSyn, we show that the major metabolite channel of the outer membrane, the voltage-dependent anion channel (VDAC), is a pathway for αSyn translocation into the mitochondria. Importantly, the neuroprotective cholesterol-like synthetic compound olesoxime inhibits this translocation. By applying complementary electrophysiological and biophysical approaches, we provide mechanistic insights into the interplay between αSyn, VDAC, and olesoxime. Our data suggest that olesoxime interacts with VDAC β-barrel at the lipid-protein interface thus hindering αSyn translocation through the VDAC pore and affecting VDAC voltage gating. We propose that targeting αSyn translocation through VDAC could represent a key mechanism for the development of new neuroprotective strategies.

    Topics: alpha-Synuclein; Apoptosis; Cell Line, Tumor; Cell Survival; Cholestenones; Humans; Lipid Bilayers; Membrane Potential, Mitochondrial; Mitochondria; Protective Agents; Protein Binding; Protein Transport; Reactive Oxygen Species; RNA Interference; RNA, Small Interfering; Voltage-Dependent Anion Channel 1

2020
Protective role of olesoxime against wild-type α-synuclein-induced toxicity in human neuronally differentiated SHSY-5Y cells.
    British journal of pharmacology, 2015, Volume: 172, Issue:1

    Parkinson's disease (PD) is usually diagnosed clinically from classical motor symptoms, while definitive diagnosis is made postmortem, based on the presence of Lewy bodies and nigral neuron cell loss. α-Synuclein (ASYN), the main protein component of Lewy bodies, clearly plays a role in the neurodegeneration that characterizes PD. Additionally, mutation in the SNCA gene or copy number variations are associated with some forms of familial PD. Here, the objective of the study was to evaluate whether olesoxime, a promising neuroprotective drug can prevent ASYN-mediated neurotoxicity.. We used here a novel, mechanistically approachable and attractive cellular model based on the inducible overexpression of human wild-type ASYN in neuronally differentiated human neuroblastoma (SHSY-5Y) cells. This model demonstrates gradual cellular degeneration, coinciding temporally with the appearance of soluble and membrane-bound ASYN oligomers and cell death combining both apoptotic and non-apoptotic pathways.. Olesoxime fully protected differentiated SHSY-5Y cells from cell death, neurite retraction and cytoplasmic shrinkage induced by moderate ASYN overexpression. This protection was associated with a reduction in cytochrome c release from mitochondria and caspase-9 activation suggesting that olesoxime prevented ASYN toxicity by preserving mitochondrial integrity and function. In addition, olesoxime displayed neurotrophic effects on neuronally differentiated SHSY-5Y cells, independent of ASYN expression, by promoting their differentiation.. Because ASYN is a common underlying factor in many cases of PD, olesoxime could be a promising therapy to slow neurodegeneration in PD.

    Topics: alpha-Synuclein; Caspases; Cell Line, Tumor; Cell Survival; Cholestenones; Cytochromes c; Humans; Neurons; Neuroprotective Agents

2015
Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons.
    Neurobiology of disease, 2014, Volume: 69

    Cholesterol-oximes TRO19622 and TRO40303 target outer mitochondrial membrane proteins and have beneficial effects in preclinical models of neurodegenerative diseases leading to their advancement to clinical trials. Dopaminergic neurons degenerate in Parkinson's disease (PD) and are prone to oxidative stress and mitochondrial dysfunction. In order to provide insights into the neuroprotective potential of TRO19622 and TRO40303 for dopaminergic neurons in vivo, we assessed their effects on gene expression in laser captured nigrostriatal dopaminergic neurons of wildtype mice and of mice that over-express alpha-synuclein, a protein involved in both familial and sporadic forms of PD (Thy1-aSyn mice). Young mice were fed the drugs in food pellets or a control diet from 1 to 4months of age, approximately 10months before the appearance of striatal dopamine loss in this model. Unbiased weighted gene co-expression network analysis (WGCNA) of transcriptional changes revealed effects of cholesterol oximes on transcripts related to mitochondria, cytoprotection and anti-oxidant response in wild-type and transgenic mice, including increased transcription of stress defense (e.g. Prdx1, Prdx2, Glrx2, Hspa9, Pink1, Drp1, Trak1) and dopamine-related (Th, Ddc, Gch1, Dat, Vmat2, Drd2, Chnr6a) genes. Even at this young age transgenic mice showed alterations in transcripts implicated in mitochondrial function and oxidative stress (e.g. Bcl-2, Bax, Casp3, Nos2), and both drugs normalized about 20% of these alterations. Young Thy1-aSyn mice exhibit motor deficits that differ from parkinsonism and are established before the onset of treatment; these deficits were not improved by cholesterol oximes. However, high doses of TRO40303 improved olfaction and produced the same effects as dopamine agonists on a challenging beam test, specifically an increase in footslips, an observation congruent with its effects on transcripts involved in dopamine synthesis. High doses of TRO19622 increased alpha-synuclein aggregates in the substantia nigra; this effect, not seen with TRO40303 was inconsistent and may represent a protective mechanism as in other neurodegenerative diseases. Overall, the results suggest that cholesterol oximes, while not improving early effects of alpha-synuclein overexpression on motor behavior or pathology, may ameliorate the function and resilience of dopaminergic neurons in vivo and support further studies of neuroprotection in models with dopaminergic cell loss.

    Topics: alpha-Synuclein; Animals; Brain; Cholestenones; Corpus Striatum; Dopamine Agonists; Dopaminergic Neurons; Gene Expression; Humans; Male; Mice, Transgenic; Movement Disorders; Neuroprotective Agents; Oximes; Parkinsonian Disorders; RNA, Messenger; Secosteroids; Substantia Nigra; Transcriptome

2014