alpha-synuclein has been researched along with 6-7-dihydroxyflavone* in 3 studies
3 other study(ies) available for alpha-synuclein and 6-7-dihydroxyflavone
Article | Year |
---|---|
7,8-Dihydroxyflavone ameliorates mitochondrial impairment and motor dysfunction in the α-synuclein 1-103 transgenic mice.
Parkinson's disease (PD) is the most common motor-associated neurodegenerative disease. Although the pathogenesis of PD is still wrapped in the mist, accumulating evidence indicates that mitochondrial dysfunction contributes to the onset and progression of PD. We previously reported that the lysosomal protease asparagine endopeptidase (AEP) cleaves α-synuclein in the brains of PD patients. The major product, α-synuclein 1-103, significantly promotes PD-like histological changes and motor dysfunction. However, the underlying molecular mechanisms remain unknown. Here we show that α-synuclein 1-103 fragment interacts with mitochondria and induces morphological and functional abnormalities of mitochondria. Furthermore, we investigated the protective effects of 7,8-dihydroxyflavone (7,8-DHF) on mitochondrial dysfunction induced by α-synuclein 1-103 fragment. We found that 7,8-DHF ameliorated α-synuclein 1-103-induced mitochondrial impairment and motor dysfunction. These results indicate that 7,8-DHF represents a novel oral bioactive therapeutic agent for treating PD. Topics: alpha-Synuclein; Animals; Flavones; Humans; Mice; Mice, Transgenic; Mitochondria; Neurodegenerative Diseases; Parkinson Disease | 2022 |
Design and Molecular dynamic Investigations of 7,8-Dihydroxyflavone Derivatives as Potential Neuroprotective Agents Against Alpha-synuclein.
Parkinson's disease (PD) is the second most common neurodegenerative disorder caused due to loss of dopaminergic neurons in substantia nigra pars compacta, which occurs the presence of Lewy bodies made up of Alpha-synuclein (ASN) aggregation resulting in neuronal death. This study aims to identify potent 7,8-Dihydroxyflavone (DHF) derivatives to inhibit the ASN aggregation from in silico analysis. Molecular docking study reveals that carbamic ester derivatives of DHF [DHF-BAHPC (8q), DHF-BAHPEC (8s), DHF-BAHEC (8p), DHF-BDOPC (8c), DHF-BAPEC (8n) and DHF-BAMC (8h)] have good binding affinity towards ASN, when compared with DHF and L-DOPA; their docking score values are -16.3120, -16.1875, -15.2223, -14.3118, -14.2893, -14.2810, -14.0383, and -9.1560 kcal/mol respectively. The in silico pharmacological evaluation shows that these molecules exhibit the drug-likeness and ADMET properties. Molecular dynamics simulation confirms the stability of the molecules with ASN. The intermolecular interaction analyzed under the dynamic condition, allows to identify the candidate which potentially inhibits ASN aggregation. Hence, we propose that DHF derivatives are the potential lead drug molecules and preclinical studies are needed to confirm the promising therapeutic ability against PD. Topics: alpha-Synuclein; Carbamates; Computer Simulation; Drug Design; Esters; Flavones; Humans; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Structure | 2020 |
7,8-dihydroxyflavone Ameliorates Motor Deficits Via Suppressing α-synuclein Expression and Oxidative Stress in the MPTP-induced Mouse Model of Parkinson's Disease.
Parkinson disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN) and diminished dopamine content in the striatum, which is at least partly associated with α-synuclein protein overexpression in these neurons. Recent reports show that 7,8-dihydroxyflavone (DHF), a TrkB agonist, has beneficial effects in animal model of PD. However, it is unclear whether the therapeutic effects of DHF are associated with the expression of α-synuclein.. In this study, we investigated the protective effects of DHF on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced deficit of motor functions, the loss of dopaminergic neurons and the expression of α-synuclein as well as antioxidative activity in the C57BL/6 mice.. Mice were treated with MPTP (30 mg/kg, i.p.) once a day for 5 days to induce dopaminergic neuron death in the SN. DHF (5 mg/kg, i.p.) was administrated once a day from the first day of MPTP injection until 9 days after the last injection of MPTP. Behavioral tests showed that DHF succeeded in ameliorating the impaired motor functions in the MPTP-treated mice. The immunohistochemical assay showed that the amelioration of motor function was accompanied by a reduction in the loss of dopaminergic neurons in the SN and striatum. Western blot analyses showed that DHF prevented the inactivation of TrkB and suppressed α-synuclein overexpression in the SN and striatum following MPTP treatment. Antioxidative activity detection revealed that DHF prevented MPTP-induced reduction in glutathione and total superoxide dismutase activity in the SN and striatum.. Taken together, these results indicate that DHF treatment may suppress the accumulation of α-synuclein and oxidative stress via activating TrkB and subsequently block the loss of dopaminergic neurons in the SN and striatum, thereby ameliorating MPTP-induced motor deficits in the C57BL/6 mice. Topics: alpha-Synuclein; Analysis of Variance; Animals; Antiparkinson Agents; Cell Death; Disease Models, Animal; Flavones; Gene Expression Regulation; Mice; Mice, Inbred C57BL; Movement; MPTP Poisoning; Oxidative Stress; Psychomotor Performance; Receptor, trkA; Rotarod Performance Test; Tyrosine 3-Monooxygenase | 2016 |