alpha-synuclein and 3-nitropropionic-acid

alpha-synuclein has been researched along with 3-nitropropionic-acid* in 10 studies

Other Studies

10 other study(ies) available for alpha-synuclein and 3-nitropropionic-acid

ArticleYear
Failure of Neuroprotection Despite Microglial Suppression by Delayed-Start Myeloperoxidase Inhibition in a Model of Advanced Multiple System Atrophy: Clinical Implications.
    Neurotoxicity research, 2015, Volume: 28, Issue:3

    Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disease. Post-mortem hallmarks of MSA neuropathology include oligodendroglial α-synuclein (αSYN) inclusions, striatonigral degeneration, olivopontocerebellar atrophy, and increased microglial activation that accompanies the wide spread neurodegeneration. Recently, we demonstrated upregulation of myeloperoxidase (MPO) in activated microglia and provided evidence for the role of microglial MPO in the mediation of MSA-like neurodegeneration (Stefanova et al. Neurotox Res 21:393-404, 2015). The aim of the current study was to assess the therapeutic potency of MPO inhibition (MPOi) in a model of advanced MSA. We replicated the advanced pathology of MSA by intoxicating transgenic PLP-α-synuclein transgenic mice with 3-nitropropionic acid (3NP). After onset of the full-blown pathology, MSA mice received either MPOi or vehicle over 3 weeks. Motor phenotype and neuropathology were analyzed to assess the therapeutic efficacy of MPOi compared to vehicle treatment in MSA mice. MPOi therapy initiated after the onset of severe MSA-like neuropathology in mice failed to attenuate motor impairments and neuronal loss within the striatum, substantia nigra pars compacta, inferior olives, pontine nuclei, and cerebellar cortex. However, we observed a significant reduction of microglial activation in degenerating brain areas. Further, nitrated αSYN accumulation was reduced in the striatonigral region. In summary, delayed-start MPOi treatment reduced microglial activation and levels of nitrated αSYN in a mouse model of advanced MSA. These effects failed to impact on motor impairments and neuronal loss in contrast to previously reported disease modifying efficacy of early-start therapy with MPOi in MSA.

    Topics: alpha-Synuclein; Animals; Brain; Disease Models, Animal; Enzyme Inhibitors; Humans; Male; Mice, Transgenic; Microglia; Motor Activity; Multiple System Atrophy; Myelin Proteolipid Protein; Neurons; Neuroprotective Agents; Nitro Compounds; Peroxidase; Propionates; Pyrimidinones; Pyrroles; Severity of Illness Index; Treatment Outcome

2015
Mitochondrial impairment and oxidative stress compromise autophagosomal degradation of α-synuclein in oligodendroglial cells.
    Journal of neurochemistry, 2015, Volume: 135, Issue:1

    α-Synuclein (α-syn)-containing glial cytoplasmic inclusions originating in oligodendrocytes are characteristically observed in multiple system atrophy. The mechanisms of glial cytoplasmic inclusion formation remain rather elusive. α-Syn over-expression, uptake from the environment, oxidative stress or impairment of the proteolytic degradation systems have been discussed. Here, we investigated whether in oligodendrocytes autophagy plays a major role in the degradation and aggregation of endogenously expressed α-syn and of α-syn taken up from the extracellular environment. Furthermore, we studied whether in cells with impaired mitochondria the accumulation and aggregation of exogenously added α-syn is promoted. Using primary cultures of rat brain oligodendrocytes and an oligodendroglial cell line, genetically engineered to express green fluorescent protein-microtubule-associated light chain 3 with or without α-syn to monitor the autophagic flux, we demonstrate that both exogenously applied α-syn and α-syn stably expressed endogenously are effectively degraded by autophagy and do not affect the autophagic flux per se. Mitochondrial impairment with the protonophore carbonyl cyanide 3-chlorophenylhydrazone or 3-nitropropionic acid disturbs the autophagic pathway and leads to the accumulation of exogenously applied α-syn and enhances its propensity to form aggregates intracellularly. Thus, mitochondrial dysfunction and oxidative stress, which occur over time and are significant pathological features in synucleinopathies, have an impact on the autophagic pathway and participate in pathogenesis. Glial cytoplasmic inclusions are characteristically observed in multiple system atrophy, their occurrence might be related to failure in protein degradation systems. Here, we show that in oligodendrocytes autophagy is the major route of α-synuclein degradation which is either endogenously expressed or added exogenously (1, 2). Mitochondrial impairment (3) disturbs the autophagic flux and leads to the accumulation of exogenously applied α-synuclein, and enhances its propensity to form aggregates intracellulary (4).

    Topics: alpha-Synuclein; Animals; Autophagy; Cells, Cultured; Cytoplasm; Mitochondria; Multiple System Atrophy; Nerve Tissue Proteins; Nitro Compounds; Oligodendroglia; Oxidative Stress; Propionates; Rats

2015
Erythropoietin is neuroprotective in a transgenic mouse model of multiple system atrophy.
    Movement disorders : official journal of the Movement Disorder Society, 2011, Feb-15, Volume: 26, Issue:3

    Multiple system atrophy is a rapidly progressive neurodegenerative disorder with a markedly reduced life expectancy. Failure of symptomatic treatment raises an urgent need for disease-modifying strategies. We have investigated the neuroprotective potential of erythropoietin in (proteolipid protein)-α-synuclein transgenic mice exposed to 3-nitropropionic acid featuring multiple system atrophy-like pathology including oligodendroglial α-synuclein inclusions and selective neuronal degeneration. Mice were treated with erythropoietin starting before (early erythropoietin) and after (late erythropoietin) intoxication with 3-nitropropionic acid. Nonintoxicated animals receiving erythropoietin and intoxicated animals treated with saline served as control groups. Behavioral tests included pole test, open field activity, and motor behavior scale. Immunohistochemistry for tyrosine hydroxylase and dopamine and cyclic adenosine monophosphate-regulated phosphoprotein (DARPP-32) was analyzed stereologically. Animals receiving erythropoietin before and after 3-nitropropionic acid intoxication scored significantly lower on the motor behavior scale and they performed better in the pole test than controls with no significant difference between early and late erythropoietin administration. Similarly, rearing scores were worse in 3-nitropropionic acid-treated animals with no difference between the erythropoietin subgroups. Immunohistochemistry revealed significant attenuation of 3-nitropropionic acid-induced loss of tyrosine hydroxylase and DARPP-32 positive neurons in substantia nigra pars compacta and striatum, respectively, in both erythropoietin-treated groups without significant group difference in the substantia nigra. However, at striatal level, a significant difference between early and late erythropoietin administration was observed. In the combined (proteolipid protein)-α-synuclein 3-nitropropionic acid multiple system atrophy mouse model, erythropoietin appears to rescue dopaminergic and striatal gabaergic projection neurons. This effect is associated with improved motor function. Further studies are warranted to develop erythropoietin as a potential interventional therapy in multiple system atrophy.

    Topics: alpha-Synuclein; Animals; Cell Death; Convulsants; Corpus Striatum; Disease Models, Animal; Dopamine and cAMP-Regulated Phosphoprotein 32; Drug Administration Schedule; Erythropoietin; Exploratory Behavior; Humans; Mice; Mice, Transgenic; Motor Activity; Multiple System Atrophy; Myelin Proteolipid Protein; Nitro Compounds; Propionates; Substantia Nigra; Tyrosine 3-Monooxygenase

2011
Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults.
    Nature neuroscience, 2011, Sep-04, Volume: 14, Issue:10

    Mice heterozygous for the homeobox gene Engrailed-1 (En1) display progressive loss of mesencephalic dopaminergic (mDA) neurons. We report that exogenous Engrailed-1 and Engrailed-2 (collectively Engrailed) protect mDA neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial complex I toxin used to model Parkinson's disease in animals. Engrailed enhances the translation of nuclearly encoded mRNAs for two key complex I subunits, Ndufs1 and Ndufs3, and increases complex I activity. Accordingly, in vivo protection against MPTP by Engrailed is antagonized by Ndufs1 small interfering RNA. An association between Engrailed and complex I is further confirmed by the reduced expression of Ndufs1 and Ndufs3 in the substantia nigra pars compacta of En1 heterozygous mice. Engrailed also confers in vivo protection against 6-hydroxydopamine and α-synuclein-A30P. Finally, the unilateral infusion of Engrailed into the midbrain increases striatal dopamine content, resulting in contralateral amphetamine-induced turning. Therefore, Engrailed is both a survival factor for adult mDA neurons and a regulator of their physiological activity.

    Topics: alpha-Synuclein; Animals; Cell Count; Cells, Cultured; Chromatography, High Pressure Liquid; Dizocilpine Maleate; Dopamine; Dopamine Plasma Membrane Transport Proteins; Electron Transport Chain Complex Proteins; Embryo, Mammalian; Homeodomain Proteins; In Vitro Techniques; Male; Mesencephalon; Mice; Mice, Inbred C57BL; Mice, Transgenic; NADH Dehydrogenase; Nerve Tissue Proteins; Neurons; Neurotoxins; Nitro Compounds; Oxidopamine; Propionates; RNA, Small Interfering; Rotenone; Stereotyped Behavior; Tyrosine 3-Monooxygenase

2011
Alpha-synuclein deficient mice are resistant to toxin-induced multiple system atrophy.
    Neuroreport, 2010, Apr-21, Volume: 21, Issue:6

    Multiple systems atrophy (MSA) is a neurodegenerative disorder characterized by oligodendrocytic accumulations of alpha-synuclein (alphasyn). Oxidative stress is a key mechanism proposed to underlie MSA pathology. To address the role of alphasyn modifications, over and above general oxidative modifications, this study examined the effects of 3-nitropropionic acid (3NP) administration, a technique used to model MSA, in knock-out mice lacking alphasyn (alphasynKO). Although susceptible to 3NP-induced oxidative stress, alphasynKO mice display reduced neuronal loss and dendritic pathology. The alphasynKO mice are resistant to 3NP-induced motor deficits and display attenuated loss of tyrosine hydroxylase and dopamine transporter striatal immunoreactivity. The results suggest that deficits in MSA are not due to general oxidative protein modification but in addition may be related to specific alphasyn modifications.

    Topics: alpha-Synuclein; Animals; Brain; Disease Models, Animal; Mice; Mice, Knockout; Mice, Transgenic; Multiple System Atrophy; Neurons; Nitro Compounds; Oxidative Stress; Propionates

2010
Mitochondrial inhibitor 3-nitroproprionic acid enhances oxidative modification of alpha-synuclein in a transgenic mouse model of multiple system atrophy.
    Journal of neuroscience research, 2009, Volume: 87, Issue:12

    Multiple system atrophy (MSA) is a progressive neurodegenerative disease characterized by autonomic failure, parkinsonism, cerebellar ataxia, and oligodendrocytic accumulation of alpha-synuclein (alphasyn). Oxidative stress has been linked to neuronal death in MSA and the mitochondrial toxin 3-nitropropionic acid (3NP) is known to enhance the motor deficits and neurodegeneration in transgenic mice models of MSA. However, the effect of 3NP administration on alphasyn itself has not been studied. In this context, we examined the neuropathological effects of 3NP administration in alphasyn transgenic mice expressing human alphasyn (halphasyn) under the control of the myelin basic protein (MBP) promoter and the effect of this administration on posttranslational modifications of alphasyn, on levels of total alphasyn, and on its solubility. We demonstrate that 3NP administration altered levels of nitrated and oxidized alphasyn in the MBP-halphasyn tg while not affecting global levels of phosphorylated or total alphasyn. 3NP administration also exaggerated neurological deficits in the MBP-halphasyn tg mice, resulting in widespread neuronal degeneration and behavioral impairment.

    Topics: alpha-Synuclein; Animals; Brain; Convulsants; Disease Models, Animal; Mice; Mice, Transgenic; Mitochondria; Multiple System Atrophy; Myelin Basic Protein; Nerve Degeneration; Nitrates; Nitro Compounds; Oxidative Stress; Promoter Regions, Genetic; Propionates

2009
Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases.
    Journal of neurochemistry, 2009, Volume: 109, Issue:5

    Coenzyme Q(10) (CoQ(10)) and creatine are promising agents for neuroprotection in neurodegenerative diseases via their effects on improving mitochondrial function and cellular bioenergetics and their properties as antioxidants. We examined whether a combination of CoQ(10) with creatine can exert additive neuroprotective effects in a MPTP mouse model of Parkinson's disease, a 3-NP rat model of Huntington's disease (HD) and the R6/2 transgenic mouse model of HD. The combination of the two agents produced additive neuroprotective effects against dopamine depletion in the striatum and loss of tyrosine hydroxylase neurons in the substantia nigra pars compacta (SNpc) following chronic subcutaneous administration of MPTP. The combination treatment resulted in significant reduction in lipid peroxidation and pathologic alpha-synuclein accumulation in the SNpc neurons of the MPTP-treated mice. We also observed additive neuroprotective effects in reducing striatal lesion volumes produced by chronic subcutaneous administration of 3-NP to rats. The combination treatment showed significant effects on blocking 3-NP-induced impairment of glutathione homeostasis and reducing lipid peroxidation and DNA oxidative damage in the striatum. Lastly, the combination of CoQ(10) and creatine produced additive neuroprotective effects on improving motor performance and extending survival in the transgenic R6/2 HD mice. These findings suggest that combination therapy using CoQ(10) and creatine may be useful in the treatment of neurodegenerative diseases such as Parkinson's disease and HD.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 8-Hydroxy-2'-Deoxyguanosine; alpha-Synuclein; Analysis of Variance; Animals; Chromatography, High Pressure Liquid; Creatine; Deoxyguanosine; Disease Models, Animal; Dopamine; Drug Therapy, Combination; Glutathione; Glutathione Disulfide; Huntington Disease; Lipid Peroxidation; Male; Malondialdehyde; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Nitro Compounds; Parkinson Disease; Propionates; Rats; Rats, Inbred Lew; Tyrosine 3-Monooxygenase; Ubiquinone

2009
Rasagiline is neuroprotective in a transgenic model of multiple system atrophy.
    Experimental neurology, 2008, Volume: 210, Issue:2

    Rasagiline is a novel selective irreversible monoamine oxidase-B (MAO-B) inhibitor recently introduced for the symptomatic treatment of Parkinson disease. Like other propargylamines rasagiline has also shown neuroprotective effects independent of MAO-B-inhibition in various in vitro and in vivo models. The present study was performed to test the potential of rasagiline as a disease-modifying agent in multiple system atrophy (MSA) using a transgenic mouse model previously described by our group. (PLP)-alpha-synuclein transgenic mice featuring glial cytoplasmic inclusion pathology underwent 3-nitropropionic acid intoxication to model full-blown MSA-like neurodegeneration. Two doses of rasagiline were used (0.8 and 2.5 mg/kg) for a treatment period of 4 weeks. Rasagiline-treated animals were compared to placebo saline-treated mice by evaluation of motor behaviour and neuropathology. Motor behavioural tests including pole test, stride length test and general motor score evaluation showed improvements in motor deficits associated with 2.5 mg/kg rasagiline therapy. Immunohistochemistry and histology showed significant reduction of 3-NP-induced neuronal loss in striatum, substantia nigra pars compacta, cerebellar cortex, pontine nuclei and inferior olives of MSA mice receiving 2.5 mg/kg rasagiline. The results of the study indicate that rasagiline confers neuroprotection in a transgenic mouse model of MSA and may therefore be considered a promising disease-modifying candidate for human MSA.

    Topics: alpha-Synuclein; Analysis of Variance; Animals; Behavior, Animal; Brain; Disease Models, Animal; Dopamine and cAMP-Regulated Phosphoprotein 32; Dose-Response Relationship, Drug; Indans; Mice; Mice, Transgenic; Motor Activity; Multiple System Atrophy; Myelin Proteolipid Protein; Neurons; Neuroprotective Agents; Nitro Compounds; Propionates; Psychomotor Performance; Tyrosine 3-Monooxygenase

2008
Mice lacking alpha-synuclein are resistant to mitochondrial toxins.
    Neurobiology of disease, 2006, Volume: 21, Issue:3

    Abnormalities in the function of alpha-synuclein are implicated in the pathogenesis of Parkinson's disease (PD). We found that alpha-synuclein-deficient mice are resistant to MPTP-induced degeneration of dopaminergic neurons. There was dose-dependent protection against loss of both dopamine in the striatum and dopamine transporter (DAT) immunoreactive neurons in the substantia nigra. These effects were not due to alterations in MPTP processing. We found that alpha-synuclein-deficient mice are also resistant to both malonate and 3-nitropropionic acid (3-NP) neurotoxicity. There was reduced generation of reactive oxygen species in alpha-synuclein-deficient mice following administration of 3-NP. These findings implicate alpha-synuclein as a modulator of oxidative damage, which has been implicated in neuronal death produced by MPTP and other mitochondrial toxins.

    Topics: alpha-Synuclein; Animals; Malonates; Mice; Mice, Mutant Strains; Mitochondria; Neurons; Neurotoxins; Nitro Compounds; Parkinsonian Disorders; Propionates

2006
Oxidative stress in transgenic mice with oligodendroglial alpha-synuclein overexpression replicates the characteristic neuropathology of multiple system atrophy.
    The American journal of pathology, 2005, Volume: 166, Issue:3

    Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by parkinsonism unresponsive to dopaminergic therapy, cerebellar ataxia, and dysautonomia. Neuropathology shows a characteristic neuronal multisystem degeneration that is associated with widespread oligodendroglial alpha-synuclein (alpha-SYN) inclusions. Presently no animal model completely replicates the specific neuropathology of MSA. Here we investigated the behavioral and pathological features resulting from oligodendroglial alpha-SYN overexpression in transgenic mice exposed to mitochondrial inhibition by 3-nitropropionic acid. In transgenic mice 3-nitropropionic acid induced or augmented motor deficits that were associated with MSA-like pathology including striatonigral degeneration and olivopontocerebellar atrophy. Widespread astrogliosis and microglial activation were also observed in the presence of alpha-SYN in oligodendrocytes. Our results indicate that combined mitochondrial inhibition and overexpression of oligodendroglial alpha-SYN generates a novel model of MSA that may be useful for evaluating both pathogenesis and treatment strategies.

    Topics: alpha-Synuclein; Animals; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Astrocytes; Disease Models, Animal; Image Processing, Computer-Assisted; Immunohistochemistry; Mice; Mice, Transgenic; Microglia; Movement; Movement Disorders; Multiple System Atrophy; Nerve Tissue Proteins; Neurons; Nitro Compounds; Oligodendroglia; Oxidative Stress; Propionates; Synucleins; Time Factors

2005