alpha-synuclein has been researched along with 1-palmitoyl-2-oleoylphosphatidylcholine* in 21 studies
21 other study(ies) available for alpha-synuclein and 1-palmitoyl-2-oleoylphosphatidylcholine
Article | Year |
---|---|
Assembly of α-synuclein aggregates on phospholipid bilayers.
The spontaneous self-assembly of α-synuclein (α-syn) into aggregates of different morphologies is associated with the development of Parkinson's disease. However, the mechanism behind the spontaneous assembly remains elusive. The current study shows a novel effect of phospholipid bilayers on the assembly of the α-syn aggregates. Using time-lapse atomic force microscopy, it was discovered that α-syn assembles into aggregates on bilayer surfaces, even at the nanomolar concentration range. The efficiency of the aggregation process depends on the membrane composition, with the greatest efficiency observed for of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS). Importantly, assembled aggregates can dissociate from the surface, suggesting that on-surface aggregation is a mechanism by which pathological aggregates may be produced. Computational modeling revealed that dimers of α-syn assembled rapidly, through the membrane-bound monomer on POPS bilayer, due to an aggregation-prone orientation of α-syn. Interaction of α-syn with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) leads to a binding mode that does not induce a fast assembly of the dimer. Based on these findings, we propose a model in which the interaction of α-syn with membranes plays a critical role initiating the formation of α-syn aggregates and the overall aggregation process. Topics: alpha-Synuclein; Computer Simulation; Humans; Lipid Bilayers; Models, Chemical; Phosphatidylcholines; Phosphatidylserines; Protein Aggregates | 2019 |
Supported Lipid Bilayers for Atomic Force Microscopy Studies.
Nanoimaging methods, atomic force microscopy (AFM) in particular, are widely used to study the interaction of biological molecules with the supported lipid bilayer (SLB), which itself is a traditional model for cellular membranes. Success in these studies is based on the availability of a stable SLB for the required observation period, which can extend several hours. The application of AFM requires that the SLB have a smooth morphology, thus enabling visualization of proteins and other molecules on its surface. Herein, we describe protocols for SLB assembly by using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) on a mica support. Our methodology enables us to assemble defect-free POPC and POPS SLBs that remain stable for at least 8 h. The application of such smooth and stable surfaces is illustrated by monitoring of the on-surface aggregation of amyloid proteins with the use of time-lapse AFM. Topics: alpha-Synuclein; Aluminum Silicates; Lipid Bilayers; Microscopy, Atomic Force; Phosphatidylcholines; Reproducibility of Results; Time-Lapse Imaging | 2018 |
α-Synuclein Oligomers Stabilize Pre-Existing Defects in Supported Bilayers and Propagate Membrane Damage in a Fractal-Like Pattern.
Phospholipid vesicles are commonly used to get insights into the mechanism by which oligomers of amyloidogenic proteins damage membranes. Oligomers of the protein α-synuclein (αS) are thought to create pores in phospholipid vesicles containing a high amount of anionic phospholipids but fail to damage vesicle membranes at low surface charge densities. The current understanding of how αS oligomers damage the membranes is thus incomplete. This incomplete understanding may, in part, result from the choice of model membrane systems. The use of free-standing membranes such as vesicles may interfere with the unraveling of some damage mechanisms because the line tension at the edge of a membrane defect or pore ensures defect closure. Here, we have used supported lipid bilayers (SLBs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPC/POPS) to study the membrane damage caused by αS oligomers. Although αS oligomers were not able to initiate the disruption of POPC/POPS vesicles or intact SLBs, oligomers did stabilize and enlarge pre-existing SLB defects. The increased exposure of lipid acyl chains at the edges of defects very likely facilitates membrane-oligomer interactions, resulting in the growth of fractal domains devoid of lipids. Concomitant with the appearance of the fractal membrane damage patterns, lipids appear in solution, directly implicating αS oligomers in the observed lipid extraction. The growth of the membrane damage patterns is not limited by the binding of lipids to the oligomer. The analysis of the shape and growth of the lipid-free domains suggests the involvement of an oligomer-dependent diffusion-limited extraction mechanism. The observed αS oligomer-induced propagation of membrane defects offers new insights into the mechanisms by which αS oligomers can contribute to the loss in membrane integrity. Topics: alpha-Synuclein; Cell Membrane; Fractals; Lipid Bilayers; Microscopy, Atomic Force; Microscopy, Confocal; Phosphatidylcholines; Phosphatidylserines; Time-Lapse Imaging; Unilamellar Liposomes | 2016 |
Oligomers of Parkinson's Disease-Related α-Synuclein Mutants Have Similar Structures but Distinctive Membrane Permeabilization Properties.
Single-amino acid mutations in the human α-synuclein (αS) protein are related to early onset Parkinson's disease (PD). In addition to the well-known A30P, A53T, and E46K mutants, recently a number of new familial disease-related αS mutations have been discovered. How these mutations affect the putative physiological function of αS and the disease pathology is still unknown. Here we focus on the H50Q and G51D familial mutants and show that like wild-type αS, H50Q and G51D monomers bind to negatively charged membranes, form soluble partially folded oligomers with an aggregation number of ~30 monomers under specific conditions, and can aggregate into amyloid fibrils. We systematically studied the ability of these isolated oligomers to permeabilize membranes composed of anionic phospholipids (DOPG) and membranes mimicking the mitochondrial phospholipid composition (CL:POPE:POPC) using a calcein release assay. Small-angle X-ray scattering studies of isolated oligomers show that oligomers formed from wild-type αS and the A30P, E46K, H50Q, G51D, and A53T disease-related mutants are composed of a similar number of monomers. However, although the binding affinity of the monomeric protein and the aggregation number of the oligomers formed under our specific protocol are comparable for wild-type αS and H50Q and G51D αS, G51D oligomers cannot disrupt negatively charged and physiologically relevant model membranes. Replacement of the membrane-immersed glycine with a negatively charged aspartic acid at position 51 apparently abrogates membrane destabilization, whereas a mutation in the proximal but solvent-exposed part of the membrane-bound α-helix such as that found in the H50Q mutant has little effect on the bilayer disrupting properties of oligomers. Topics: alpha-Synuclein; Cell Membrane Permeability; Fluoresceins; Humans; Membranes, Artificial; Multiprotein Complexes; Mutation, Missense; Parkinson Disease; Phosphatidylcholines; Phosphatidylethanolamines; Phosphatidylglycerols; Protein Binding; Scattering, Small Angle; X-Ray Diffraction | 2015 |
Ca(2+) modulating α-synuclein membrane transient interactions revealed by solution NMR spectroscopy.
α-Synuclein is involved in Parkinson's disease and its interaction with cell membrane is crucial to its pathological and physiological functions. Membrane properties, such as curvature and lipid composition, have been shown to affect the interactions by various techniques, but ion effects on α-synuclein membrane interactions remain elusive. Ca(2+) dynamic fluctuation in neurons plays important roles in the onset of Parkinson's disease and its influx is considered as one of the reasons to cause cell death. Using solution Nuclear Magnetic Resonance (NMR) spectroscopy, here we show that Ca(2+) can modulate α-synuclein membrane interactions through competitive binding to anionic lipids, resulting in dissociation of α-synuclein from membranes. These results suggest a negative modulatory effect of Ca(2+) on membrane mediated normal function of α-synuclein, which may provide a clue, to their dysfunction in neurodegenerative disease. Topics: Adenosine; alpha-Synuclein; Apolipoprotein A-I; Calcium; Cell Membrane; Glycerophospholipids; Humans; Lipid Bilayers; Magnetic Resonance Spectroscopy; Phosphatidylcholines; Protein Binding | 2014 |
Modelling Ser129 phosphorylation inhibits membrane binding of pore-forming alpha-synuclein oligomers.
In several neurodegenerative diseases, hyperphosphorylation at position Ser129 is found in fibrillar deposits of alpha-synuclein (asyn), implying a pathophysiological role of asyn phosphorylation in neurodegeneration. However, recent animal models applying asyn phosphorylation mimics demonstrated a protective effect of phosphorylation. Since metal-ion induced asyn oligomers were identified as a potential neurotoxic aggregate species with membrane pore-forming abilities, the current study was undertaken to determine effects of asyn phosphorylation on oligomer membrane binding.. We investigated the influence of S129 phosphorylation on interactions of metal-ion induced asyn oligomers with small unilamellar lipid vesicles (SUV) composed of POPC and DPPC applying the phosphorylation mimic asyn129E. Confocal single-particle fluorescence techniques were used to monitor membrane binding at the single-particle level.. Binding of asyn129E monomers to gel-state membranes (DPPC-SUV) is slightly reduced compared to wild-type asyn, while no interactions with membranes in the liquid-crystalline state (POPC-SUV) are seen for both asyn and asyn129E. Conversely, metal-ion induced oligomer formation is markedly increased in asyn129E. Surprisingly, membrane binding to POPC-SUV is nearly absent in Fe(3+) induced asyn129E oligomers and markedly reduced in Al(3+) induced oligomers.. The protective effect of pseudophosphorylation seen in animal models may be due to impeded oligomer membrane binding. Phosphorylation at Ser129 may thus have a protective effect against neurotoxic asyn oligomers by preventing oligomer membrane binding and disruption of the cellular electrophysiological equilibrium. Importantly, these findings put a new complexion on experimental pharmaceutical interventions against POLO-2 kinase. Topics: 1,2-Dipalmitoylphosphatidylcholine; alpha-Synuclein; Cell Membrane; Humans; Mutation; Phosphatidylcholines; Phosphorylation; Porosity; Protein Binding; Protein Multimerization; Protein Structure, Quaternary; Serine; Temperature; Unilamellar Liposomes | 2014 |
Amyloids of alpha-synuclein affect the structure and dynamics of supported lipid bilayers.
Interactions of monomeric alpha-synuclein (αS) with lipid membranes have been suggested to play an important role in initiating aggregation of αS. We have systematically analyzed the distribution and self-assembly of monomeric αS on supported lipid bilayers. We observe that at protein/lipid ratios higher than 1:10, αS forms micrometer-sized clusters, leading to observable membrane defects and decrease in lateral diffusion of both lipids and proteins. An αS deletion mutant lacking amino-acid residues 71-82 binds to membranes, but does not observably affect membrane integrity. Although this deletion mutant cannot form amyloid, significant amyloid formation is observed in the wild-type αS clusters. These results suggest that the process of amyloid formation, rather than binding of αS on membranes, is crucial in compromising membrane integrity. Topics: Adsorption; alpha-Synuclein; Amyloid; Benzothiazoles; Lipid Bilayers; Liposomes; Mutant Proteins; Phosphatidylcholines; Phosphatidylglycerols; Protein Aggregates; Protein Binding; Staining and Labeling; Thiazoles | 2014 |
α-Synuclein-induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry.
We have investigated the membrane remodeling capacity of the N-terminal membrane-binding domain of α-synuclein (α-Syn100). Using fluorescence correlation spectroscopy and vesicle clearance assays, we show that α-Syn100 fully tubulates POPG vesicles, the first demonstration that the amphipathic helix on its own is capable of this effect. We also show that at equal density of membrane-bound protein, α-Syn has dramatically reduced affinity for, and does not tubulate, vesicles composed of a 1:1 POPG:POPC mixture. Coarse-grained molecular dynamics simulations suggested that the difference between the pure POPG and mixture results may be attributed to differences in the protein's partition depth, the membrane's hydrophobic thickness, and disruption of acyl chain order. To explore the importance of these attributes compared with the role of the reduced binding energy, we created an α-Syn100 variant in which we removed the hydrophobic core of the non-amyloid component (NAC) domain and tested its impact on pure POPG vesicles. We observed a substantial reduction in binding affinity and tubulation, and simulations of the NAC-null protein suggested that the reduced binding energy increases the protein mobility on the bilayer surface, likely impacting the protein's ability to assemble into organized pretubule structures. We also used simulations to explore a potential role for interleaflet coupling as an additional driving force for tubulation. We conclude that symmetry across the leaflets in the tubulated state maximizes the interaction energy of the two leaflets and relieves the strain induced by the hydrophobic void beneath the amphipathic helix. Topics: alpha-Synuclein; Lipids; Membranes, Artificial; Phosphatidylcholines; Phosphatidylglycerols | 2014 |
Besides fibrillization: putative role of the peptide fragment 71-82 on the structural and assembly behavior of α-synuclein.
The fibrillization of α-synuclein (α-syn) is involved in Parkinson's disease, a neurodegenerative disorder that affects four million people in the world. The amino acid sequence 71-82 of this protein (VTGVTAVAQKTV) has appeared to be essential for fibril formation. In the present study, we have investigated the secondary structure and thermal stability of the peptide fragment 71-82, α-syn71-82, as a function of concentration and temperature, as well as its interactions with phospholipid model membranes using various spectroscopic techniques. The data show that α-syn71-82 is mainly disordered in solution with the presence of a few β-sheet structure elements. The peptide reversibly forms intermolecular β-sheets with increasing concentration and decreasing temperature, suggesting that it is subjected to a thermodynamic equilibrium between a monomeric and an oligomeric form. This equilibrium seems to be affected by the presence of zwitterionic membranes. Conversely, the influence of the peptide on zwitterionic lipid bilayers is small and concentration-dependent. By contrast, α-syn71-82 is strongly affected by anionic vesicles. The peptide indeed exhibits a dramatic conformational change, reflecting an extensive and irreversible self-aggregation, the majority of the amino acids being involved in a parallel β-sheet conformation. The aggregates appear to be located near the membrane surface but do not perturb significantly the membrane order. Comparing these results with the literature, it appears that α-syn71-82 shares several general properties and structural similarities with its parent protein. These common points suggest that the sequence 71-82 may overall contribute to the behavior and properties of α-syn. Topics: alpha-Synuclein; Amyloid; Circular Dichroism; Humans; Lipid Bilayers; Models, Molecular; Nuclear Magnetic Resonance, Biomolecular; Osmolar Concentration; Peptide Fragments; Phosphatidylcholines; Phosphatidylglycerols; Protein Aggregation, Pathological; Protein Conformation; Protein Interaction Domains and Motifs; Protein Stability; Protein Structure, Secondary; Protein Unfolding; Solubility; Temperature | 2014 |
α-Synuclein oligomers with broken helical conformation form lipoprotein nanoparticles.
α-Synuclein (αS) is a membrane-binding protein with sequence similarity to apolipoproteins and other lipid-carrying proteins, which are capable of forming lipid-containing nanoparticles, sometimes referred to as "discs." Previously, it has been unclear whether αS also possesses this property. Using cryo-electron microscopy and light scattering, we found that αS can remodel phosphatidylglycerol vesicles into nanoparticles whose shape (ellipsoidal) and dimensions (in the 7-10-nm range) resemble those formed by apolipoproteins. The molar ratio of αS to lipid in nanoparticles is ∼1:20, and αS is oligomeric (including trimers and tetramers). Similar nanoparticles form when αS is added to vesicles of mitochondrial lipids. This observation suggests a mechanism for the previously reported disruption of mitochondrial membranes by αS. Circular dichroism and four-pulse double electron electron resonance experiments revealed that in nanoparticles αS assumes a broken helical conformation distinct from the extended helical conformation adopted when αS is bound to intact vesicles or membrane tubules. We also observed αS-dependent tubule and nanoparticle formation in the presence of oleic acid, implying that αS can interact with fatty acids and lipids in a similar manner. αS-related nanoparticles might play a role in lipid and fatty acid transport functions previously attributed to this protein. Topics: alpha-Synuclein; Cholesterol; Chromatography, Gel; Cryoelectron Microscopy; Fluorescence Resonance Energy Transfer; Humans; Lipoproteins; Membranes, Artificial; Mitochondrial Membranes; Nanoparticles; Particle Size; Phosphatidylcholines; Phosphatidylglycerols; Phosphatidylserines; Protein Structure, Quaternary; Protein Structure, Secondary | 2013 |
Membrane bound α-synuclein is fully embedded in the lipid bilayer while segments with higher flexibility remain.
Cellular pathways involving α-synuclein (αS) seem to be causative for development of Parkinson's disease. Interactions between αS and lipid membranes appear to be important for the physiological function of the protein and influence the pathological aggregation of αS leading to the formation of amyloid plaques. Upon membrane binding the unstructured αS folds into amphipathic helices. In our work we characterized the penetration depth and probed the local environment of Trp-residues introduced along the αS sequence. We could show that while the entire helix is well embedded in the lipid bilayer, segments with a shallower penetration and supposable higher flexibility exist. Topics: Acrylamide; alpha-Synuclein; Amino Acid Sequence; Cell Membrane; Humans; Lipid Bilayers; Lipids; Micelles; Molecular Sequence Data; Parkinson Disease; Phosphatidylcholines; Phosphatidylserines; Protein Binding; Protein Structure, Tertiary; Tryptophan | 2013 |
Membrane remodeling by α-synuclein and effects on amyloid formation.
α-Synuclein (α-Syn), an intrinsically disordered protein, is associated with Parkinson's disease. Though molecular pathogenic mechanisms are ill-defined, mounting evidence connects its amyloid forming and membrane binding propensities to disease etiology. Contrary to recent data suggesting that membrane remodeling by α-syn involves anionic phospholipids and helical structure, we discovered that the protein deforms vesicles with no net surface charge (phosphatidylcholine, PC) into tubules (average diameter ∼20 nm). No discernible secondary structural changes were detected by circular dichroism spectroscopy upon the addition of vesicles. Notably, membrane remodeling inhibits α-syn amyloid formation affecting both lag and growth phases. Using five single tryptophan variants and time-resolved fluorescence anisotropy measurements, we determined that α-syn influences bilayer structure with surprisingly weak interaction and no site specificity (partition constant, Kp ∼ 300 M(-1)). Vesicle deformation by α-syn under a variety of different lipid/protein conditions is characterized via transmission electron microscopy. As cellular membranes are enriched in PC lipids, these results support possible biological consequences for α-syn induced membrane remodeling related to both function and pathogenesis. Topics: Adenosine; alpha-Synuclein; Amyloid; Cholesterol; Circular Dichroism; Glycerophospholipids; Indicators and Reagents; Lipid Bilayers; Lipids; Membranes, Artificial; Microscopy, Electron, Transmission; Microtubules; Neutrons; Phosphatidylcholines; Spectrophotometry, Ultraviolet; Tryptophan | 2013 |
Locally resolved membrane binding affinity of the N-terminus of α-synuclein.
α-Synuclein is abundantly present in Lewy bodies, characteristic of Parkinson's disease. Its exact physiological role has yet to be determined, but mitochondrial membrane binding is suspected to be a key aspect of its function. Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling allowed for a locally resolved analysis of the protein-membrane binding affinity for artificial phospholipid membranes, supported by a study of binding to isolated mitochondria. The data reveal that the binding affinity of the N-terminus is nonuniform. Topics: alpha-Synuclein; Cell Membrane; Electron Spin Resonance Spectroscopy; Humans; Lewy Bodies; Membranes, Artificial; Mutation; Phosphatidylcholines; Phosphatidylglycerols; Phospholipids | 2012 |
Formation of a high affinity lipid-binding intermediate during the early aggregation phase of alpha-synuclein.
The alpha-synuclein (alpha-syn) protein is clearly implicated in Parkinson's disease (PD). Mutations or triplication of the alpha-syn gene leads to early onset PD, possibly by accelerating alpha-syn oligomerization. alpha-syn interacts with lipids, and this membrane binding activity may relate to its toxic activity. To understand how the alpha-syn aggregation state affects its lipid binding activity we used surface plasmon resonance to study the interaction of wild-type and mutant alpha-syn with a charged phospholipid membrane, as a function of its aggregation state. Apparent dissociation constants for alpha-syn indicated that an intermediate species, present during the lag phase of amyloid formation, binds with an increased affinity to the membrane surface. Formation of this species was dependent upon the rate of fibril formation. Fluorescence anisotropy studies indicate that only upon the formation of amyloid material can alpha-syn perturb the acyl-chain region of the lipid bilayer. Circular dichroism spectroscopy showed that upon aging, both wild-type and mutant alpha-syn lose their ability to form lipid-bound alpha-helical species once they become fibrillar. These results indicate that alpha-syn forms a high affinity lipid binding intermediate species during fibril formation. Oligomeric alpha-syn is known to be toxic, and it is feasible that the high affinity binding species described here may correspond to a toxic species involved in PD. Topics: alpha-Synuclein; Circular Dichroism; Humans; Lipids; Microscopy, Electron; Phosphatidylcholines; Phosphatidylserines; Protein Structure, Quaternary; Protein Structure, Secondary; Surface Plasmon Resonance; Unilamellar Liposomes | 2008 |
Broken helix in vesicle and micelle-bound alpha-synuclein: insights from site-directed spin labeling-EPR experiments and MD simulations.
The region 35-43 of human alpha-Synuclein bound to small unilamellar lipid vesicles and to sodium dodecyl sulfate micelles has been investigated by site-directed spin labeling and electron paramagnetic resonance spectroscopy. The distance distributions obtained from spectral fitting have been analyzed on the basis of the allowed rotamers of the spin-label side-chain. Very similar results have been obtained in the two environments: an unbroken helical structure of the investigated region can be ruled out. The distance distributions are rather compatible with the presence of conformational disorder, in agreement with previous findings for micelle-bound alpha-Synuclein. The propensity for helix breaking is confirmed by molecular dynamics simulations. Topics: alpha-Synuclein; Amino Acid Sequence; Computer Simulation; Electron Spin Resonance Spectroscopy; Humans; Lipid Bilayers; Micelles; Models, Molecular; Molecular Sequence Data; Nuclear Magnetic Resonance, Biomolecular; Phosphatidylcholines; Protein Structure, Secondary; Sodium Dodecyl Sulfate; Spin Labels | 2008 |
Dynamics of alpha-synuclein aggregation and inhibition of pore-like oligomer development by beta-synuclein.
Accumulation of alpha-synuclein resulting in the formation of oligomers and protofibrils has been linked to Parkinson's disease and Lewy body dementia. In contrast, beta-synuclein (beta-syn), a close homologue, does not aggregate and reduces alpha-synuclein (alpha-syn)-related pathology. Although considerable information is available about the conformation of alpha-syn at the initial and end stages of fibrillation, less is known about the dynamic process of alpha-syn conversion to oligomers and how interactions with antiaggregation chaperones such as beta-synuclein might occur. Molecular modeling and molecular dynamics simulations based on the micelle-derived structure of alpha-syn showed that alpha-syn homodimers can adopt nonpropagating (head-to-tail) and propagating (head-to-head) conformations. Propagating alpha-syn dimers on the membrane incorporate additional alpha-syn molecules, leading to the formation of pentamers and hexamers forming a ring-like structure. In contrast, beta-syn dimers do not propagate and block the aggregation of alpha-syn into ring-like oligomers. Under in vitro cell-free conditions, alpha-syn aggregates formed ring-like structures that were disrupted by beta-syn. Similarly, cells expressing alpha-syn displayed increased ion current activity consistent with the formation of Zn(2+)-sensitive nonselective cation channels. These results support the contention that in Parkinson's disease and Lewy body dementia, alpha-syn oligomers on the membrane might form pore-like structures, and that the beneficial effects of beta-synuclein might be related to its ability to block the formation of pore-like structures. Topics: alpha-Synuclein; beta-Synuclein; Cations; Cell Line; Computer Simulation; Electrophysiology; Humans; Ion Channels; Microscopy, Electron, Scanning; Models, Molecular; Phosphatidylcholines; Protein Binding; Protein Conformation; Protein Structure, Quaternary; Protein Structure, Secondary; Static Electricity; Transfection; Zinc | 2007 |
Alpha-synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles.
Alpha-synuclein, a presynaptic protein associated with Parkinson's disease, is found as both soluble cytosolic and membrane-bound forms. Although the function of alpha-synuclein is unknown, several observations suggest that its association with membranes is important. In the present study we investigated the effect of alpha-synuclein on lipid oxidation in membranes containing phospholipids with unsaturated fatty acids. The kinetics of lipid oxidation were monitored by the change in fluorescence intensity of the dye C11-BODIPY. We find that monomeric alpha-synuclein efficiently prevented lipid oxidation, whereas fibrillar alpha-synuclein had no such effect. Our data suggest that the prevention of unsaturated lipid oxidation by alpha-synuclein requires that it bind to the lipid membrane. The antioxidant function of alpha-synuclein is attributed to its facile oxidation via the formation of methionine sulfoxide, as shown by mass spectrometry. These findings suggest that the inhibition of lipid oxidation by alpha-synuclein may be a physiological function of the protein. Topics: alpha-Synuclein; Antioxidants; Boron Compounds; Circular Dichroism; Fluorescence; Kinetics; Liposomes; Oxidation-Reduction; Phosphatidylcholines; Phosphatidylglycerols | 2006 |
Calcium-triggered membrane interaction of the alpha-synuclein acidic tail.
Alpha-synuclein (alpha-syn) is a 140-residue protein that aggregates in intraneuronal inclusions called Lewy bodies in Parkinson's disease (PD). It is composed of an N-terminal domain with a propensity to bind lipids and a C-terminal domain rich in acidic residues (the acidic tail). The objective of this study was to examine the effect of Ca(2+) on the acidic tail conformation in lipid-bound alpha-syn. We exploit the extreme sensitivity of the band III fluorescence emission peak of the pyrene fluorophore to the polarity of its microenvironment to monitor subtle conformational response of the alpha-syn acidic tail to Ca(2+). Using recombinant human alpha-syn bearing a pyrene to probe either the N-terminal domain or the acidic tail, we noted that lipid binding resulted in an increase in band III emission intensity in the pyrene probe tagging the N-terminal domain but not that in the acidic tail. This suggests that the protein is anchored to the lipid surface via the N-terminal domain. However, addition of Ca(2+) caused an increase in band III emission intensity in the pyrene tagging the acidic tail, with a corresponding increased susceptibility to quenching by quenchers located in the lipid milieu, indicative of lipid interaction of this domain. Taken together with the increased beta-sheet content of membrane-associated alpha-syn in the presence of Ca(2+), we propose a model wherein initial lipid interaction occurs via the N-terminal domain, followed by a Ca(2+)-triggered membrane association of the acidic tail as a potential mechanism leading to alpha-syn aggregation. These observations have direct implications in the role of age-related oxidative stress and the attendant cellular Ca(2+) dysregulation as critical factors in alpha-syn aggregation in PD. Topics: Adenosine; alpha-Synuclein; Amino Acid Sequence; Calcium; Cell Membrane; Circular Dichroism; Fluorescence; Glycerophospholipids; Humans; Hydrogen-Ion Concentration; Lipid Bilayers; Membrane Lipids; Molecular Sequence Data; Phosphatidylcholines; Protein Conformation; Pyrenes; Recombinant Proteins | 2006 |
Effects of Parkinson's disease-linked mutations on the structure of lipid-associated alpha-synuclein.
Alpha-synuclein (alphaS) is a lipid-binding synaptic protein of unknown function that is found in an aggregated amyloid fibril form in the intraneuronal Lewy body deposits that are a defining characteristic of Parkinson's disease (PD). Although intrinsically unstructured when free in solution, alphaS adopts a highly helical conformation in association with lipid membranes or membrane mimetic detergent micelles. Two mutations in the alphaS gene have been linked to early onset autosomal dominant hereditary forms of PD, and have been shown to affect the aggregation kinetics of the protein in vitro. We have used high-resolution NMR spectroscopy, circular dichroism, and limited proteolysis to investigate the effects of these PD-linked mutations on the helical structure adopted by alphaS in the lipid or detergent micelle-bound form. We show that neither the A53T nor the A30P mutation has a significant effect on the structure of the folded protein, although the A30P mutation may cause a minor perturbation in the helical structure around the site of the mutation. The A30P, but not the A53T, mutation also appears to decrease the affinity of the protein for lipid surfaces, possibly by perturbing the nascent helical structure of the free protein. The potential implications of these results for the role of alphaS in PD are discussed. Topics: Alanine; alpha-Synuclein; Humans; Lipid Metabolism; Liposomes; Micelles; Mutation, Missense; Nerve Tissue Proteins; Nuclear Magnetic Resonance, Biomolecular; Parkinson Disease; Phosphatidic Acids; Phosphatidylcholines; Proline; Protein Binding; Protein Structure, Secondary; Recombinant Proteins; Synucleins; Threonine | 2004 |
Membrane binding and self-association of alpha-synucleins.
Although its function is unknown, alpha-synuclein is widely distributed in neural tissue and is the major component in the pathological aggregates found in patients with Parkinson's disease, Alzheimer's disease, Down's syndrome, and multiple system atrophy. In this report, we have quantified the binding alpha-synucleins to lipid membranes. In contrast to previous studies, we find, using real time equilibrium fluorescence methods, that alpha-synuclein binds strongly to large, unilamellar vesicles with either anionic or zwitterionic headgroups. Membrane binding is also strong for beta-synuclein, phosphorylated alpha-synuclein, and a synuclein mutant that is associated with familial Parkinson's disease. In solution at less than 400 nM, synuclein has a tendency to undergo concentration-dependent oligomerization as determined by changes in intrinsic fluorescence and fluorescence resonance energy transfer. Above this concentration, the protein begins to aggregate into structures visible by light scattering. Although membrane binding does not affect the secondary structure of alpha-synuclein, it greatly inhibits the ability of this protein to self-associate. Taken together, our results indicate that pathological conditions may be associated with a disruption in synuclein-membrane interactions. Topics: alpha-Synuclein; beta-Synuclein; Blotting, Western; Cell Membrane; Circular Dichroism; Dose-Response Relationship, Drug; Electrophoresis, Polyacrylamide Gel; Escherichia coli; Humans; Hydrogen-Ion Concentration; Lipids; Nerve Tissue Proteins; Neurodegenerative Diseases; Phosphatidylcholines; Phosphatidylethanolamines; Phosphorylation; Protein Binding; Protein Structure, Secondary; Protein Structure, Tertiary; Silver Staining; Spectrometry, Fluorescence; Synucleins | 2001 |
Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes.
alpha-Synuclein is a highly conserved presynaptic protein of unknown function. A mutation in the protein has been causally linked to Parkinson's disease in humans, and the normal protein is an abundant component of the intraneuronal inclusions (Lewy bodies) characteristic of the disease. alpha-Synuclein is also the precursor to an intrinsic component of extracellular plaques in Alzheimer's disease. The alpha-synuclein sequence is largely composed of degenerate 11-residue repeats reminiscent of the amphipathic alpha-helical domains of the exchangeable apolipoproteins. We hypothesized that alpha-synuclein should associate with phospholipid bilayers and that this lipid association should stabilize an alpha-helical secondary structure in the protein. We report that alpha-synuclein binds to small unilamellar phospholipid vesicles containing acidic phospholipids, but not to vesicles with a net neutral charge. We further show that the protein associates preferentially with vesicles of smaller diameter (20-25 nm) as opposed to larger (approximately 125 nm) vesicles. Lipid binding is accompanied by an increase in alpha-helicity from 3% to approximately 80%. These observations are consistent with a role in vesicle function at the presynaptic terminal. Topics: alpha-Synuclein; Amino Acid Sequence; Animals; Binding Sites; Canaries; Circular Dichroism; Humans; Liposomes; Molecular Sequence Data; Nerve Tissue Proteins; Osmolar Concentration; Phosphatidic Acids; Phosphatidylcholines; Phosphatidylethanolamines; Phosphatidylinositols; Protein Structure, Secondary; Sequence Alignment; Sequence Homology, Amino Acid; Structure-Activity Relationship; Synucleins | 1998 |