alpha-neoendorphin has been researched along with norbinaltorphimine* in 3 studies
3 other study(ies) available for alpha-neoendorphin and norbinaltorphimine
Article | Year |
---|---|
Involvement of spinal release of α-neo-endorphin on the antinociceptive effect of TAPA.
The antinociceptive effect of i.t.-administered Tyr-d-Arg-Phe-β-Ala (TAPA), an N-terminal tetrapeptide analog of dermorphin, was characterized in ddY mice. In the mouse tail-flick test, TAPA administered i.t. produced a potent antinociception. The antinociception induced by TAPA was significantly attenuated by i.t. pretreatment with the κ-opioid receptor antagonist nor-binaltorphimine, as well as by the μ-opioid receptor antagonist β-funaltrexamine and the μ1-opioid receptor antagonist naloxonazine. TAPA-induced antinociception was also significantly suppressed by co-administration of the μ1-opioid receptor antagonist Tyr-d-Pro-Phe-Phe-NH2 (d-Pro(2)-endomorphin-2) but not by co-administration of the μ2-opioid receptor antagonists Tyr-d-Pro-Trp-Phe-NH2 (d-Pro(2)-endomorphin-1) and Tyr-d-Pro-Trp-Gly-NH2 (d-Pro(2)-Tyr-W-MIF-1). In CXBK mice whose μ1-opioid receptors were naturally reduced, the antinociceptive effect of TAPA was markedly suppressed compared to the parental strain C57BL/6ByJ mice. Moreover, the antinociception induced by TAPA was significantly attenuated by i.t. pretreatment with antiserum against the endogenous κ-opioid peptide α-neo-endorphin but not antisera against other endogenous opioid peptides. In prodynorphin-deficient mice, the antinociceptive effect of TAPA was significantly reduced compared to wild-type mice. These results suggest that the spinal antinociception induced by TAPA is mediated in part through the release of α-neo-endorphin in the spinal cord via activation of spinal μ1-opioid receptors. Topics: Analgesia; Analgesics, Opioid; Animals; Endorphins; Gene Expression; Immune Sera; Injections, Spinal; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Naloxone; Naltrexone; Narcotic Antagonists; Nociception; Oligopeptides; Protein Precursors; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spinal Cord; Tail | 2013 |
Possible involvement of dynorphin A release via mu1-opioid receptor on supraspinal antinociception of endomorphin-2.
It has been demonstrated that the antinociception induced by i.t. or i.c.v. administration of endomorphins is mediated through mu-opioid receptors. Moreover, though endomorphins do not have appreciable affinity for kappa-opioid receptors, pretreatment with the kappa-opioid receptor antagonist nor-binaltorphimine markedly blocks the antinociception induced by i.c.v.- or i.t.-injected endomorphin-2, but not endomorphin-1. These evidences propose the hypothesis that endomorphin-2 may initially stimulate the mu-opioid receptors, which subsequently induces the release of dynorphins acting on kappa-opioid receptors to produce antinociception. The present study was performed to determine whether the release of dynorphins by i.c.v.-administered endomorphin-2 is mediated through mu-opioid receptors for producing antinociception. Intracerebroventricular pretreatment with an antiserum against dynorphin A, but not dynorphin B or alpha-neo-endorphin, and s.c. pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine dose-dependently attenuated the antinociception induced by i.c.v.-administered endomorphin-2, but not endomorphin-1 and DAMGO. The attenuation of endomorphin-2-induced antinociception by pretreatment with antiserum against dynorphin A or nor-binaltorphimine was dose-dependently eliminated by additional s.c. pretreatment with a selective mu-opioid receptor antagonist beta-funaltrexamine or a selective mu1-opioid receptor antagonist naloxonazine at ultra low doses, which are inactive against micro-opioid receptor agonists in antinociception, suggesting that endomorphin-2 stimulates distinct subclass of micro1-opioid receptor that induces the release of dynorphin A acting on kappa-opioid receptors in the brain. It concludes that the antinociception induced by supraspinally administered endomorphin-2 is in part mediated through the release of endogenous kappa-opioid peptide dynorphin A, which is caused by the stimulation of distinct subclass of micro1-opioid receptor. Topics: Analgesics; Animals; Dynorphins; Endorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Immune Sera; Injections, Intraventricular; Male; Mice; Naloxone; Naltrexone; Oligopeptides; Protein Precursors; Receptors, Opioid, kappa; Receptors, Opioid, mu | 2008 |
Kappa opiate receptors inhibit release of oxytocin from the magnocellular system during dehydration.
Magnocellular neurons synthesize vasopressin (VP) or oxytocin (OT) and release these hormones preferentially from the neural lobe during physiological stimulation. In the rat, VP is secreted preferentially during dehydration and hemorrhage, whereas OT is released without VP by suckling, parturition, stress, and nausea. Vasopressinergic neurons also synthesize and release dynorphin-related peptides--alpha- and beta-neoendorphin, dynorphin A (1-8) or (1-17), dynorphin B--which are agonists selective for kappa opiate receptors in the neural lobe. We proposed that one mechanism for preferential secretion of neurohypophysial hormones is that a dynorphin-related peptide(s) coreleased with VP inhibits selectively OT secretion from magnocellular neurons. We tested this hypothesis in conscious adult male Sprague-Dawley rats which were stimulated by either hypertonic saline administered intraperitoneally (2.5%, 20 ml/kg) or subcutaneously (1 M, 15 ml/kg) or by 24 h of water deprivation. Two approaches were used: (1) dynorphin-related peptides (0.02-20.4 mM) were injected intracerebroventricularly 1 min before decapitating the animal, and (2) the action of endogenous opioid peptides was blocked by injecting subcutaneously or intracerebroventricularly either naloxone or a selective kappa receptor antagonist, Mr 2266 or nor-binaltorphimine. VP and OT were measured by radioimmunoassay. After 24 h of water deprivation, the elevation in plasma [OT] but not [VP] was attenuated (p less than 0.05) by alpha-neoendorphin. Dynorphin A (1-8) also inhibited the release of OT and not VP after intraperitoneal administration of hypertonic saline. Blocking the action of endogenous opioid peptides at kappa receptors with Mr 2266 given peripherally (s.c.) elevated plasma [OT] but not [VP] after stimulation with hypertonic saline administered intraperitoneally or subcutaneously.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Benzomorphans; Dehydration; Dynorphins; Endorphins; Hypertonic Solutions; Injections, Intraventricular; Male; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Osmolar Concentration; Oxytocin; Peptide Fragments; Pituitary Gland, Posterior; Protein Precursors; Radioimmunoassay; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, kappa; Vasopressins | 1990 |