alpha-neoendorphin and beta-neo-endorphin

alpha-neoendorphin has been researched along with beta-neo-endorphin* in 16 studies

Reviews

1 review(s) available for alpha-neoendorphin and beta-neo-endorphin

ArticleYear
Biosynthesis and distribution of opioid peptides.
    Journal of endocrinological investigation, 1983, Volume: 6, Issue:2

    Group III opioid peptides are derived from proenkephalin B. The processing of this precursor peptide is still only partly understood and we still do not know how many final products come from proenkephalin B and whether Leu-enkephalin is produced from Group III peptides. However, potent biologic activity of Group III opioid peptides and existence of opiate-receptors specific for these peptides (k receptors) strongly suggest that Group III opioid peptides are not precursors of Leu-enkephalin but bioactive substances per se. Further studies should clarify details of the processing of proenkephalin B.

    Topics: Adrenal Medulla; Adrenocorticotropic Hormone; Animals; beta-Endorphin; beta-Lipotropin; Brain; Dynorphins; Endorphins; Enkephalins; Gastric Mucosa; Humans; Ileum; Melanocyte-Stimulating Hormones; Pituitary Gland; Pituitary Hormones, Anterior; Pro-Opiomelanocortin; Protein Precursors

1983

Other Studies

15 other study(ies) available for alpha-neoendorphin and beta-neo-endorphin

ArticleYear
Hemodynamic responses of conscious rats following intrathecal injections of prodynorphin-derived opioids: independence of action of intrathecal arginine vasopressin.
    Canadian journal of physiology and pharmacology, 1990, Volume: 68, Issue:2

    Experiments were conducted (i) to determine the hemodynamic (blood pressure and heart rate) responses of conscious rats following intrathecal (IT) administration of endogenous prodynorphin-derived opioids into the lower thoracic space, (ii) to identify the receptors involved in mediating their cardiovascular responses, and (iii) to reveal any possible hemodynamic interactions with the neuropeptide arginine vasopressin. Male Sprague-Dawley rats were surgically prepared with femoral arterial and venous catheters as well as a spinal catheter (into lower thoracic region, T9-T12). After recovery, hemodynamic responses were observed in conscious rats for 5-10 min after IT injections of artificial cerebrospinal fluid (CSF) solution, prodynorphin-derived opioids (dynorphin A, dynorphin B, dynorphin A (1-13), dynorphin A (1-10), alpha- and beta-neoendorphin, leucine enkephalin (LE), methionine enkephalin (ME), arginine vasopressin (AVP), or norepinephrine (NE)). IT injections of AVP (10 or 20 pmol), dynorphin A (1-13), or dynorphin A (10-20 nmol) caused pressor effects associated with a prolonged and significant bradycardia. Equimolar (20 nmol) concentrations of LE, ME, alpha- and beta-neoendorphin, and dynorphin A (1-10) caused no significant blood pressure or heart rate changes. Combined IT injections of dynorphin A (1-13) and AVP caused apparent additive pressor effects when compared with the same dose of either peptide given alone. IT infusion of the specific AVP-V1 antagonist d(CH2)5Tyr(Me)AVP before subsequent IT AVP, dynorphin A (1-13), or NE administration inhibited only the subsequent pressor responses to AVP. The kappa-opioid antagonist (Mr2266) infused IT blocked the pressor actions of subsequent dynorphin A administration and not AVP or NE.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Animals; Arginine Vasopressin; beta-Endorphin; Blood Pressure; Dynorphins; Endorphins; Enkephalin, Leucine; Enkephalin, Methionine; Enkephalins; Heart Rate; Hemodynamics; Injections, Spinal; Male; Narcotics; Norepinephrine; Peptide Fragments; Protein Precursors; Rats; Rats, Inbred Strains

1990
Opioids modulate interleukin-1 production and secretion by bone-marrow macrophages.
    Immunology letters, 1990, Volume: 24, Issue:2

    In the present study, we have assessed the effect of opioids (endorphins, enkephalins and neoendorphins) on production of IL-1 activity by bone-marrow-derived macrophages. None of the neuropeptides induced IL-1 production by itself. However, some of the opioids potentiated IL-1 production and release in macrophages concomitantly stimulated by lipopolysaccharide (LPS) or silica. LPS induced predominantly intracellular IL-1 activity, whereas most of the silica-induced IL-1 was released extracellularly. beta-Endorphin, leucine-enkephalin (leu-enkephalin) and beta-neoendorphin all potentiated both intracellular and extracellular release of IL 1 induced by either LPS or silica. In contrast, alpha-endorphin, methionine-enkephalin (metenkephalin) and alpha-neoendorphin did not influence IL-1 production or release. The potentiating effects of beta-endorphin on LPS-induced IL-1 production/secretion were inhibited by naloxone, pointing to an involvement of opioid receptors.

    Topics: Animals; beta-Endorphin; Bone Marrow Cells; Drug Synergism; Endorphins; Enkephalins; Interleukin-1; Lipopolysaccharides; Macrophages; Mice; Naloxone; Protein Precursors; Silicon Dioxide

1990
Synaptosomal membrane-bound form of endopeptidase-24.15 generates Leu-enkephalin from dynorphin1-8, alpha- and beta-neoendorphin, and Met-enkephalin from Met-enkephalin-Arg6-Gly7-Leu8.
    Journal of neurochemistry, 1987, Volume: 48, Issue:1

    Brain contains a membrane-bound form of endopeptidase-24.15, a metalloendopeptidase predominantly associated with the soluble protein fraction of brain homogenates. Subcellular fractionation of the enzyme in rat brain showed that 20-25% of the total activity is associated with membrane fractions including synaptosomes. Solubilization of the enzyme from synaptosomal membranes required the use of detergents or treatment with trypsin. The specific activity of the enzyme in synaptosomal membranes measured with tertiary-butoxycarbonyl-Phe-Ala-Ala-Phe-p-aminobenzoate as substrate was higher than that of endopeptidase-24.11 ("enkephalinase"), a membrane-bound zinc-metalloendopeptidase believed to function in brain neuropeptide metabolism. Purified synaptosomal membranes converted efficiently dynorphin1-8, alpha- and beta-neoendorphin into leucine enkephalin and methionine-enkephalin-Arg6-Gly7-Leu8 into methionine enkephalin in the presence of captopril, bestatin, and N-[1-(R,S)-carboxy-2-phenylethyl]-Phe-p-aminobenzoate, inhibitors of angiotensin converting enzyme (EC 3.4.15.1), aminopeptidase (EC 3.4.11.2), and membrane-bound metalloendopeptidase (EC 3.4.24.11), respectively. The conversion of enkephalin-containing peptides into enkephalins was virtually completely inhibited by N-[1-(R,S)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate, a specific active-site-directed inhibitor of endopeptidase-24.15, indicating that this enzyme was responsible for the observed interconversions. The data indicate that synaptosomal membranes contain enzymes that can potentially generate and degrade both leucine- and methionine-enkephalin.

    Topics: Animals; beta-Endorphin; Brain; Chromatography, High Pressure Liquid; Dynorphins; Endopeptidases; Endorphins; Enkephalin, Leucine; Enkephalin, Methionine; Male; Metalloendopeptidases; Peptide Fragments; Protease Inhibitors; Protein Precursors; Rats; Rats, Inbred Strains; Synaptic Membranes; Synaptosomes; Trypsin

1987
Characterization of big dynorphins from rat brain and spinal cord.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1987, Volume: 7, Issue:7

    To examine the processing of products of the dynorphin gene in the central nervous system, immunoreactive (ir) dynorphin (Dyn) A, Dyn B, Dyn A-(1-8), alpha- and beta-neo-endorphin (alpha- and beta-Neo) in rat brain and spinal cord were measured, using specific antisera after gel filtration and high-performance liquid chromatography (HPLC). Three peaks of Mr about 8, 4, and 2 kDa for ir-Dyn A and ir-Dyn B, and one peak of Mr less than 2 kDa for ir-Dyn A-(1-8), ir-alpha-, and ir-beta-Neo were found both in the brain and in the spinal cord. The 8 kDa peak was recognized by Dyn A and Dyn B antisera and, after hydrolysis by proline-specific endopeptidase, by beta-Neo antiserum. The 8 kDa peak was recognized by a monoclonal antibody against the amino terminal sequence Tyr-Gly-Gly-Phe of all opioid peptides and by an antiserum directed toward the carboxyl terminus of Dyn B, indicating that it contains, from the amino terminal tyrosine of neo-endorphin to the carboxyl-terminal threonine of Dyn B, all 3 opioid peptide regions in the prodynorphin. By means of proline-specific endopeptidase hydrolysis, we also found a big dynorphin precursor (Mr approximately equal to 26 kDa) in both brain and spinal cord.

    Topics: Animals; beta-Endorphin; Brain Chemistry; Chromatography, Gel; Chromatography, High Pressure Liquid; Dynorphins; Endorphins; Male; Molecular Weight; Peptide Fragments; Protein Precursors; Rats; Rats, Inbred Strains; Spinal Cord

1987
Dynorphin and neoendorphin peptides decrease dorsal root ganglion neuron calcium-dependent action potential duration.
    The Journal of pharmacology and experimental therapeutics, 1985, Volume: 234, Issue:1

    Opioid peptides decrease somatic calcium-dependent action potential duration of a subpopulation of mouse dorsal root ganglion (DRG) neurons grown in dissociated cell culture. Based on rank order of potency and naloxone sensitivity, both mu and delta opioid receptors were demonstrated on the somata of DRG neurons and were shown to have a heterogeneous distribution. The purpose of the present investigation was to determine the actions of dynorphin gene products, dynorphin A, dynorphin B, dynorphin A(1-8), dynorphin A(1-9), alpha-neoendorphin and beta-neoendorphin on DRG neuron somatic calcium-dependent action potentials and to compare the actions of dynorphin and neoendorphin peptides to the action of morphiceptin, a mu receptor-selective ligand, and Leu-enkephalin, a delta receptor-preferring ligand. We report that the dynorphin and neoendorphin peptides decreased DRG neuron somatic calcium-dependent action potential duration in a portion of DRG neurons, an action that was dose-dependent and was antagonized by naloxone. DRG neuron responses to the dynorphins and neoendorphins differed from responses to morphiceptin and Leu-enkephalin. First, many DRG neurons responded to dynorphin A but not to morphiceptin or Leu-enkephalin. Second, dynorphin A responses, unlike responses to morphiceptin or Leu-enkephalin, were present after intracellular injection of cesium, a potassium channel blocker. Dynorphin A effectiveness was decreased after deletions at the carboxy-terminus and Leu-enkephalin [dynorphin A(1-5)] was inactive at 10 microM. Thus, on DRG neurons in cell culture, dynorphins and neoendorphins act at opioid receptors distinct from mu and delta receptors, possibly kappa receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Action Potentials; Animals; beta-Endorphin; Calcium; Cells, Cultured; Dose-Response Relationship, Drug; Dynorphins; Endorphins; Enkephalin, Leucine; Ganglia, Spinal; Ion Channels; Mice; Naloxone; Protein Precursors; Receptors, Opioid; Sodium; Time Factors

1985
Stimulation by leumorphin of prolactin secretion from the pituitary in rats.
    Endocrinology, 1985, Volume: 117, Issue:3

    The effect of leumorphin (LM), one of big leu-enkephalins derived from preproenkephalin B, on PRL secretion was studied in the rat in vivo and in vitro. Intracerebroventricular injection of synthetic porcine LM (0.06-6 nmol/rat) caused a dose-related increase in plasma PRL levels in urethane-anesthetized male rats and in conscious freely moving rats. Intravenous injection of LM (3 nmol/100 g BW) also raised plasma PRL levels in these animals. The plasma PRL response to intracerebroventricular LM (0.6 nmol/rat) was blunted by naloxone (125 micrograms/100 g BW, iv). The stimulating effect of LM on PRL release was the most potent among the peptides derived from preproenkephalin B. In in vitro studies, PRL release from superfused anterior pituitary cells was stimulated in a dose-related manner by LM (10(-9)-10(-6) M), and the effect was blunted by naloxone (10(-5) M). These results suggest that LM has a potent stimulating effect on PRL secretion from the pituitary in the rat by acting, at least in part, directly at the pituitary through an opiate receptor.

    Topics: Animals; beta-Endorphin; Dynorphins; Endorphins; Enkephalins; Injections, Intraventricular; Male; Naloxone; Pituitary Gland, Anterior; Prolactin; Protein Precursors; Rats; Swine; Thyrotropin-Releasing Hormone

1985
On the origin of Leu-enkephalin and Met-enkephalin in the rat neurohypophysis.
    Endocrinology, 1985, Volume: 117, Issue:4

    The posterior lobe of the pituitary contains large amounts of Leu- and Met-enkephalin (LE and ME, respectively). A marked depletion of ME (81.9%) and LE (94.5%) in the posterior pituitary occurred after transection of the pituitary stalk. This indicates that most, if not all, of the enkephalins are in processes of central neurons. In the present study, I attempted to determine the source(s) of the LE- and ME-containing fibers in the posterior pituitary by examining the effects of hypothalamic lesions or fiber transections on the LE and ME levels. Lesions of the hypothalamic paraventricular nuclei caused ME and LE levels in the posterior pituitary to decrease significantly (55.6% and 27.6%, respectively). Deafferentation of the medial basal hypothalamus (creating islands of tissue containing the ventromedial and arcuate nuclei) resulted in a marked reduction in LE (94.1%) and ME (54.7%). Treating neonatal rats with monosodium glutamate resulted in a selective destruction of arcuate nucleus neurons, but did not affect LE and ME concentrations in the posterior pituitary. Thus, about half of the ME in the posterior pituitary seems to be provided by neurons in the vicinity of the paraventricular and ventromedial nuclei, whereas only about one quarter of the LE in the posterior pituitary is in processes of the paraventricular nucleus neurons. The remainder of the LE is contributed to the posterior pituitary by neurons outside the medial basal hypothalamus, probably by the supraoptic nucleus neurons. These findings are consistent with the hypothesis that LE and ME may be localized in separate populations of nerve endings in the neurohypophysis and may have different roles.

    Topics: Animals; Arginine Vasopressin; beta-Endorphin; Dynorphins; Endorphins; Enkephalin, Leucine; Enkephalin, Methionine; Hypothalamus, Middle; Male; Paraventricular Hypothalamic Nucleus; Peptide Fragments; Pituitary Gland, Posterior; Protein Precursors; Rats; Rats, Inbred Strains; Rats, Inbred WKY; Sodium Glutamate

1985
Effects of dehydration on pro-dynorphin derived peptides in the neuro-intermediate lobe of the rat pituitary.
    Life sciences, 1985, Oct-21, Volume: 37, Issue:16

    Dehydration significantly reduced the concentration of immunoreactive dynorphin A(1-17), dynorphin A(1-8), alpha-neo-endorphin, beta-neo-endorphin, and leu-enkephalin in the rat pituitary posterior-intermediate lobe. A statistically significant increase in immunoreactive dynorphin A(1-8), alpha-neo-endorphin and leu-enkephalin was observed in the hypothalamus. Comparison of the molar ratios of dynorphin A(1-17): dynorphin A(1-8) and alpha-neo-endorphin: beta-neo-endorphin showed an altered profile of stored pro-dynorphin cleavage products in the posterior-intermediate lobe of the pituitary of dehydrated rats.

    Topics: Animals; beta-Endorphin; Dehydration; Dynorphins; Endorphins; Enkephalin, Leucine; Enkephalins; Food Deprivation; Hypothalamus; Male; Peptide Fragments; Pituitary Gland, Posterior; Protein Precursors; Rats; Rats, Inbred Strains

1985
Evidence for a selective processing of proenkephalin B into different opioid peptide forms in particular regions of rat brain and pituitary.
    Journal of neurochemistry, 1984, Volume: 42, Issue:2

    The distribution of five major products of proenkephalin B [dynorphin1-17, dynorphin B, dynorphin1-8, alpha-neo-endorphin and beta-neo-endorphin] was studied in regions of rat brain and pituitary. The distribution pattern of immunoreactive (ir) dynorphin B (= rimorphin) was found to be similar to that of ir-dynorphin1-17, with the highest concentrations being present in the posterior pituitary and the hypothalamus. HPLC and gel filtration showed the tridecapeptide dynorphin B to be the predominant immunoreactive species recognized by dynorphin B antibodies in all brain areas and in the posterior pituitary. In addition, two putative common precursor forms of dynorphin B and dynorphin1-17 with apparent molecular weights of 3,200 and 6,000 were detected in brain and the posterior pituitary. The 3,200 dalton species coeluted with dynorphin1-32 on HPLC. In contrast with all other tissues, anterior pituitary ir-dynorphin B and ir-dynorphin1-17 consisted exclusively of the 6,000 dalton species. Concentrations of dynorphin1-8 were several times higher than those of dynorphin1-17 in striatum, thalamus, and midbrain while posterior pituitary, hypothalamus, pons/medulla, and cortex contained roughly equal concentrations of these two opioid peptides. No dynorphin1-8 was detected in the anterior pituitary. Concentrations of beta-neo-endorphin were similar to those of alpha-neo-endorphin in the posterior pituitary. In contrast, in all brain tissues alpha-neo-endorphin was found to be the predominant peptide, with tissue levels in striatum and thalamus almost 20 times higher than those of beta-neo-endorphin. These findings indicate that differential proteolytic processing of proenkephalin B occurs within different regions of brain and pituitary. Moreover, evidence is provided that, in addition to the paired basic amino acids -Lys-Arg- as the "typical" cleavage site for peptide hormone precursors, other cleavage signals also seem to exist for the processing of proenkephalin B.

    Topics: Amino Acid Sequence; Animals; beta-Endorphin; Brain; Chromatography, High Pressure Liquid; Dynorphins; Endorphins; Enkephalin, Leucine; Enkephalins; Male; Molecular Weight; Organ Specificity; Peptide Fragments; Pituitary Gland; Pituitary Gland, Posterior; Protein Precursors; Radioimmunoassay; Rats; Rats, Inbred Strains

1984
Proenkephalin B (prodynorphin)-derived opioid peptides: evidence for a differential processing in lobes of the pituitary.
    Endocrinology, 1984, Volume: 115, Issue:2

    The distribution of peptides derived from the novel opioid peptide precursor proenkephalin B (prodynorphin) was studied in lobes of the pituitary with antibodies against alpha-neoendorphin (alpha-neo-E) beta-neoE, dynorphin (DYN)-(1-17), DYN-(1-8), and DYN B in combination with gel filtration and high pressure liquid chromatography. In the posterior pituitary, all five opioid peptides occurred in high and about equimolar concentrations, whereas putative precursor peptides were found in only minor quantities. In contrast, in the anterior pituitary immunoreactive (ir-) DYN-(1-17) and ir-DYN B consisted exclusively of a common precursor species with a mol wt of about 6000. Six thousand-dalton DYN may be comprised of the C-terminal portion of proenkephalin B, with the sequence of DYN-(1-17) at its N-terminus. Moreover, the major portions of ir-alpha-neo-E and ir-beta-neoE in the anterior pituitary were found to be of an apparent mol wt of 8000. These findings indicate a differential processing of the opioid peptide precursor proenkephalin B in the two lobes of the pituitary. The anterior pituitary seems to process proenkephalin B predominantly into high mol wt forms of neo-E and DYNs, whereas in the posterior pituitary proenkephalin B undergoes further proteolytic processing to the smaller opioid peptides alpha-neo-E, beta-neo-E, DYN-(1-17), DYN-(1-8), and DYN B. Thus, processing differences may enable the selective liberation of different (opioid) peptides with distinct biological properties from one precursor within different tissues.

    Topics: Animals; beta-Endorphin; Chromatography, High Pressure Liquid; Dynorphins; Endorphins; Enkephalin, Leucine; Enkephalins; Male; Molecular Weight; Peptide Fragments; Pituitary Gland; Pituitary Gland, Anterior; Pituitary Gland, Posterior; Protein Precursors; Radioimmunoassay; Rats; Rats, Inbred Strains; Tissue Distribution

1984
Distribution of immunoreactive beta-neo-endorphin in discrete areas of the rat brain and pituitary gland: comparison with alpha-neo-endorphin.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1984, Volume: 4, Issue:5

    The distribution of immunoreactive (ir)-beta-neo-endorphin in 101 microdissected rat brain and spinal cord regions as well as in the neurointermediate lobe of pituitary gland was determined using a highly specific radioimmunoassay. The highest concentration of beta-neo-endorphin in brain was found in the median eminence (341.4 fmol/mg of protein). High concentrations of ir-beta-neo-endorphin (greater than 250 fmol/mg of protein) were found in 11 nuclei, including dorsomedial nucleus, substantia nigra, parabrachial nuclei, periaqueductal gray matter, anterior hypothalamic nucleus, and lateral preoptic areas. Moderate concentrations of the peptide (between 100 and 250 fmol/mg of protein) were found in 66 brain nuclei such as the amygdaloid and septal nuclei, most of the diencephalic structures (not including the hypothalamus), and the majority of the medulla oblongata nuclei and others. Low concentrations of ir-beta-neo-endorphin (less than 100 fmol/mg of protein) were found in 21 nuclei, e.g., cortical structures (frontal., cingulate, piriform, parietal, entorhinal, occipital), olfactory tubercle, and cerebellum (nuclei and cortex). The olfactory bulb has the lowest beta-neo-endorphin concentration (21.3 fmol/mg of protein). Spinal cord segments exhibit low peptide concentrations. The neurointermediate lobe of the pituitary gland is extremely rich in ir-beta-neo-endorphin.

    Topics: Animals; beta-Endorphin; Brain Chemistry; Cerebellum; Diencephalon; Endorphins; Hypothalamus; Male; Medulla Oblongata; Mesencephalon; Pituitary Gland; Pons; Protein Precursors; Radioimmunoassay; Rats; Rats, Inbred Strains; Telencephalon; Tissue Distribution

1984
Regional distribution of dynorphin and neo-endorphin peptides in rat brain, spinal cord, and pituitary.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1983, Volume: 3, Issue:11

    Five products of the dynorphin gene--alpha-neo-endorphin, beta-neo-endorphin, dynorphin A, dynorphin A-(1-8), and dynorphin B--were measured in various regions of rat brain and in rat spinal cord and pituitary. Specific antisera were used, supplemented by gel permeation analysis and high performance liquid chromatography, confirming the presence of dynorphin-32, dynorphin A, and dynorphin B in rat brain. In whole brain, alpha-neo-endorphin, dynorphin A-(1-8), and dynorphin B are present in much greater amounts than beta-neo-endorphin or dynorphin A. Although a general parallelism was found in the distribution of the five peptides, there were also noteworthy exceptions, suggesting that differential processing may occur.

    Topics: Animals; beta-Endorphin; Brain Chemistry; Chromatography, Gel; Chromatography, High Pressure Liquid; Dynorphins; Endorphins; Enkephalin, Leucine; Immune Sera; Male; Peptide Fragments; Peptides; Pituitary Gland; Protein Precursors; Radioimmunoassay; Rats; Rats, Inbred Strains; Spinal Cord; Tissue Distribution

1983
Stimulation of prolactin secretion in the rat by alpha-neo-endorphin, beta-neo-endorphin and dynorphin.
    Biochemical and biophysical research communications, 1982, Jul-30, Volume: 107, Issue:2

    Topics: Animals; beta-Endorphin; Dose-Response Relationship, Drug; Dynorphins; Endorphins; Enkephalins; Gonadotropin-Releasing Hormone; Injections, Intraventricular; Male; Naloxone; Pituitary Gland; Prolactin; Protein Precursors; Rats; Rats, Inbred Strains; Thyrotropin-Releasing Hormone

1982
The choice of opiate receptor subtype by neo-endorphins.
    European journal of pharmacology, 1982, Apr-23, Volume: 79, Issue:3-4

    The choice of opiate receptor subtype by alpha- and beta-neo-endorphin was studied in isolated preparations. Neo-endorphins had significant inhibitory actions on the electrically evoked contractions of guinea-pig ileum, mouse vas deferens and rabbit ileum as well as on the rabbit vas deferens which had been shown to contain kappa-receptors exclusively. Mr 2266, a relatively specific kappa-receptor antagonist, was more effective than naloxone, a relatively mu-receptor antagonist, to antagonize the agonist actions of neo-endorphins in either the guinea-pig and rabbit ileum or in the rabbit vas deferens. By contrast, in the mouse vas deferens, the effectiveness of Mr 2266 to antagonize the agonist actions of neo-endorphins was low and similar to that of naloxone. The potencies of neo-endorphins relative to that of ethylketocyclazocine, a representative kappa-receptor agonist, in the guinea-pig ileum were similar to those in the rabbit ileum but were significant different from those in the mouse vas deferens. The data indicate that neo-endorphins act as kappa-receptor agonists in either the guinea-pig and rabbit ileum or in the rabbit vas deferens while in the mouse vas deferens they act on opiate receptor subtypes other than kappa- and mu-receptors.

    Topics: Animals; Benzomorphans; beta-Endorphin; Cyclazocine; Drug Interactions; Endorphins; Enkephalins; Ethylketocyclazocine; Guinea Pigs; Ileum; In Vitro Techniques; Muscle Contraction; Muscle, Smooth; Naloxone; Protein Precursors; Rabbits; Receptors, Opioid

1982
Brain distributions of alpha-neo-endorphin and beta-neo-endorphin: evidence for regional processing differences.
    Biochemical and biophysical research communications, 1982, Sep-16, Volume: 108, Issue:1

    Topics: Animals; beta-Endorphin; Brain Chemistry; Cross Reactions; Endorphins; Enkephalins; Hypothalamus; Male; Pituitary Gland, Posterior; Protein Precursors; Radioimmunoassay; Rats; Rats, Inbred Strains

1982