alpha-methyltyrosine methyl ester and levodopa

alpha-methyltyrosine methyl ester has been researched along with levodopa in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (60.00)18.2507
2000's2 (40.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Paalzow, GH1
Klockgether, T; Turski, L1
Archer, T; Fredriksson, A; Sundström, E1
Dziubina, A; Gołembiowska, K1

Other Studies

5 other study(ies) available for alpha-methyltyrosine methyl ester and levodopa

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
L-dopa induces opposing effects on pain in intact rats: (-)-sulpiride, SCH 23390 or alpha-methyl-DL-p-tyrosine methylester hydrochloride reveals profound hyperalgesia in large antinociceptive doses.
    The Journal of pharmacology and experimental therapeutics, 1992, Volume: 263, Issue:2

    Topics: Analgesics; Animals; Benzazepines; Catecholamines; Drug Interactions; Electric Stimulation; Hyperalgesia; Levodopa; Male; Methyltyrosines; Pain; Pain Threshold; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D1; Receptors, Dopamine D2; Sulpiride; Time Factors; Vocalization, Animal

1992
NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats.
    Annals of neurology, 1990, Volume: 28, Issue:4

    Topics: Animals; Dizocilpine Maleate; Drug Synergism; Electromyography; Levodopa; Male; Methyltyrosines; Motor Activity; Muscle Rigidity; N-Methylaspartate; Parkinson Disease; Piperazines; Rats; Rats, Inbred Strains; Reserpine

1990
Chronic neurochemical and behavioral changes in MPTP-lesioned C57BL/6 mice: a model for Parkinson's disease.
    Brain research, 1990, Oct-01, Volume: 528, Issue:2

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Apomorphine; Body Weight; Corpus Striatum; Disease Models, Animal; Dopamine; Hydrazines; Levodopa; Male; Methyltyrosines; Mice; Mice, Inbred C57BL; Motor Activity; Parkinson Disease, Secondary; Receptors, Dopamine; Stereotyped Behavior

1990
Striatal adenosine A(2A) receptor blockade increases extracellular dopamine release following l-DOPA administration in intact and dopamine-denervated rats.
    Neuropharmacology, 2004, Volume: 47, Issue:3

    Topics: 3,4-Dihydroxyphenylacetic Acid; Adenosine A2 Receptor Antagonists; Analysis of Variance; Animals; Area Under Curve; Brain Chemistry; Chromatography, High Pressure Liquid; Corpus Striatum; Denervation; Dopamine; Dopamine Agents; Dose-Response Relationship, Drug; Drug Interactions; Extracellular Space; Homovanillic Acid; Hydroxyindoleacetic Acid; Levodopa; Male; Malonates; Methyltyrosines; Rats; Rats, Wistar; Receptor, Adenosine A2A; Reserpine; Serotonin; Substantia Nigra; Time Factors; Triazines; Triazoles; Xanthines

2004