alpha-methyl-4-carboxyphenylglycine and muscarine

alpha-methyl-4-carboxyphenylglycine has been researched along with muscarine in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (33.33)18.2507
2000's2 (66.67)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Hounsgaard, J; Svirskis, G1
Bernardi, G; Bonsi, P; Calabresi, P; Centonze, D; Conquet, F; Gubellini, P; Picconi, B; Pisani, A1

Other Studies

3 other study(ies) available for alpha-methyl-4-carboxyphenylglycine and muscarine

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Transmitter regulation of plateau properties in turtle motoneurons.
    Journal of neurophysiology, 1998, Volume: 79, Issue:1

    Topics: Animals; Atropine; Baclofen; Benzoates; Calcium Channels; Calcium Channels, L-Type; Cycloleucine; Excitatory Amino Acid Antagonists; Glycine; In Vitro Techniques; Membrane Potentials; Motor Neurons; Muscarine; Nifedipine; Patch-Clamp Techniques; Receptors, Metabotropic Glutamate; Resorcinols; Spinal Cord; Tetraethylammonium; Tetrodotoxin; Turtles

1998
Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons.
    Neuroscience, 2001, Volume: 106, Issue:3

    Topics: (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride; Action Potentials; Animals; Anticonvulsants; Benzoates; Cyclopropanes; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; Mice; Mice, Knockout; Muscarine; Muscarinic Agonists; N-Methylaspartate; Neostriatum; Neurons; Phenylacetates; Pyridines; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Resorcinols; Synaptic Transmission

2001