alpha-cyclodextrin and tetrabutylammonium

alpha-cyclodextrin has been researched along with tetrabutylammonium* in 2 studies

Other Studies

2 other study(ies) available for alpha-cyclodextrin and tetrabutylammonium

ArticleYear
The role of cyclodextrin-tetrabutylammonium complexation on the cellulose dissolution.
    Carbohydrate polymers, 2016, Apr-20, Volume: 140

    Cellulose dissolution is a challenging process which is typically very sensitive to the solvent characteristics such as pH, temperature or presence of additives. Regarding the later aspect, it is here reported the interaction between α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) with the tetrabutylammonium cation (TBA(+)) by (1)H NMR titration experiments. The analysis by the continuous variation method suggests the formation of 1:1 CD:TBA(+) complexes. However, the computed apparent association constants reveal that the interaction of TBA(+) with the β-CD (K=1580M(-1)) is unexpectedly stronger than with α-CD (K=106M(-1)). In both CD cases, the formation of CD:TBA(+) complexes decrease the dissolution efficiency of the solvent and this has been rationalized as an effective decrease in the concentration of the amphiphilic cation and concomitant weakening of the hydrophobic interactions in solution influencing the overall performance of the solvent. Additionally, the data also supports the fact that amphiphilic species in solution are beneficial for the enhancement of cellulose solubility.

    Topics: alpha-Cyclodextrins; beta-Cyclodextrins; Cellulose; Quaternary Ammonium Compounds

2016
Capillary electrophoretic study of thiolated alpha-cyclodextrin-capped gold nanoparticles with tetraalkylammonium ions.
    Journal of chromatography. A, 2009, Nov-27, Volume: 1216, Issue:48

    Capillary zone electrophoresis (CZE) has been employed to characterize nanometer-sized thiolated alpha-cyclodextrin-capped gold nanoparticles (alpha-CD-S-AuNPs). The addition of tetrabutylammonium (Bu(4)N(+)) ions to the run buffer greatly narrows the migration peak of alpha-CD-S-AuNP. The optimal run buffer was determined to be 10mM Bu(4)N(+) in 30 mM phosphate buffer at pH 12 and an applied voltage of 15 kV. The effect of various tetraalkylammonium ions on the peak width and electrophoretic mobility (mu(e)) of alpha-CD-S-AuNP was studied in detail. Bu(4)N(+) ions assist in inter-linking the alpha-CD-S-AuNPs and narrowing the migration peak in CZE. This observation can be explained by the fact that each Bu(4)N(+) ion can simultaneously interact with several hydrophobic cavities of the surface-attached alpha-CDs on AuNPs. The TEM images show that alpha-CD-S-AuNPs with Bu(4)N(+) are linked together but in the absence of Bu(4)N(+), they are more dispersed. The migration mechanism in CZE is based on the formation of inclusion complexes between Bu(4)N(+) and alpha-CD-S-AuNPs which induces changes in the charge-to-size ratio of alpha-CD-S-AuNPs and mu(e). An inverse linear relationship (r(2)>0.998) exists between the mu(e) and size of alpha-CD-S-AuNPs in the core range 1.4-4.1 nm. The CZE analyses are rapid with migration time less than 4 min. A few nanoliters of each of the alpha-CD-S-AuNP samples were injected hydrodynamically at 0.5 psi for 5s. Our work confirms that CZE is an efficient tool for characterizing the sizes of alpha-CD-S-AuNPs using Bu(4)N(+) ions.

    Topics: alpha-Cyclodextrins; Buffers; Electrophoresis, Capillary; Gold; Hydrogen-Ion Concentration; Ions; Metal Nanoparticles; Particle Size; Quaternary Ammonium Compounds; Sulfhydryl Compounds

2009