alpha-cyclodextrin has been researched along with methyl-orange* in 2 studies
2 other study(ies) available for alpha-cyclodextrin and methyl-orange
Article | Year |
---|---|
Molecular recognition of alpha-cyclodextrin (CD) to choral amino acids based on methyl orange as a molecular probe.
The molecular recognition interaction of alpha-CD to chiral amino acids was investigated by using spectrophotometry based on methyl orange as a molecular probe. The molecular recognition ability depended on the inclusion formation constants. The molecular recognition of alpha-CD to aromatic amino acids was the order: DL-tryptophan > L-tryptophan > L-phenylalanine > L-tyrosine approximately DL-beta-3,4-dihydroxy-phenylalanine; whereas for aliphatic amino acids, the order was: L-iso-leucine > L-leucine approximately L-methionine approximately DL-mehtionine > D-leucine. The effect of temperature on the inclusion interaction was examined and the thermodynamic parameters of inclusion process, delta G, delta H, delta S, were determined. The experimental results indicated that the inclusion process was an exothermic and enthalpy-driven process accompanied with a negative or minor positive entropic contribution. The inclusion interaction between alpha-CD and amino acids satisfied the law of enthalpy-entropy compensation. The compensation temperature was 291 K. Topics: alpha-Cyclodextrins; Amino Acids, Aromatic; Azo Compounds; Molecular Probes; Thermodynamics | 2005 |
A spectrophotometric assay for the cyclization activity of cyclomaltohexaose (alpha-cyclodextrin) glucanotransferase.
A cyclomaltohexaose (alpha-cyclodextrin) determination method which is both highly reproducible and selective is described. It involves the formation of an inclusion complex between the cyclodextrin and methyl orange under conditions of low pH (1.2) and low temperature (16 degrees C) and is useful for the assay of cyclodextrin glucanotransferase activity. The formation of the inclusion complex causes a decrease in absorbance of the methyl orange solution and this is monitored at a wavelength of 505 nm. The decrease in absorbance is linearly correlated with the cyclomaltohexaose concentration in the range of 0.25 optical density unit and 0.30 mM cyclomaltohexaose. The specificity of the test for cyclomaltohexaose is high, with only limited interference by linear oligosaccharides and other cyclodextrins: cyclomaltoheptaose and cyclomaltooctaose cause absorbance variations of 16 and 5%, respectively, of the response of maltohexaose. The formation of the complex is instantaneous and the complex is stable in time, provided the temperature is constant. The presence of methyl orange does not hinder enzymatic activity determination. The reaction is stopped by acidification and absorbance is measured at the fixed temperature of 16 degrees C. Possible interferences inherent to the composition of the sample itself can be suppressed by running appropriate controls and calculating a corrected optical density. This colorimetric method is simple and should be versatile in assaying diverse cyclomaltohexaose glucanotransferase enzymes. Topics: alpha-Cyclodextrins; Azo Compounds; Chemical Phenomena; Chemistry; Cyclization; Cyclodextrins; Glucosyltransferases; Kinetics; Reproducibility of Results; Spectrophotometry; Substrate Specificity; Temperature | 1989 |