alpha-cyclodextrin and cucurbit(6)uril

alpha-cyclodextrin has been researched along with cucurbit(6)uril* in 3 studies

Other Studies

3 other study(ies) available for alpha-cyclodextrin and cucurbit(6)uril

ArticleYear
An intelligent anticorrosion coating based on pH-responsive supramolecular nanocontainers.
    Nanotechnology, 2012, Dec-21, Volume: 23, Issue:50

    The hollow mesoporous silica nanoparticles (HMSNs), which have been used as the nanocontainers for the corrosion inhibitor, benzotriazole, were fabricated using the hard-template method. Alkaline-responsive HMSNs based on cucurbit[6]uril (CB[6])/bisammonium supramolecular complex and acid-responsive HMSNs based on α-cyclodextrin (α-CD)/aniline supramolecular complex, which operate in water, have been achieved and characterized by solid-state NMR, thermogravimetry analysis, scanning electron microscopy, transmission electron microscopy and N(2) adsorption-desorption analysis. The two elaborately designed nanocontainers show the pH-controlled encapsulation/release behaviors for benzotriazole molecules. Equal amounts of the alkaline- and acid-responsive nanocontainers were uniformly distributed in the hybrid zirconia-silica sol-gel coating and thus formed the intelligent anticorrosion coating. The self-healing property of AA2024 alloy coated with the intelligent anticorrosion coating is evaluated by electrochemical impedance spectroscopy (EIS). The sol-gel coating doped with the pH-responsive nanocontainers clearly demonstrates long-term corrosion protection performances when compared to the undoped sol-gel coating, which is attributed to the release of corrosion inhibitor from the nanocontainers after feeling the changes of environmental pH values near the corroded areas.

    Topics: alpha-Cyclodextrins; Aniline Compounds; Biomimetic Materials; Bridged-Ring Compounds; Corrosion; Delayed-Action Preparations; Hydrogen-Ion Concentration; Imidazoles; Nanostructures; Quaternary Ammonium Compounds; Rotaxanes; Silicon Dioxide; Triazoles

2012
Snap-top nanocarriers.
    Organic letters, 2010, Aug-06, Volume: 12, Issue:15

    An approach to the design and fabrication of mechanized mesoporous silica nanoparticles is demonstrated at the proof of principle level. It relies on the reductive cleavage of disulfide bonds within an integrated nanosystem, wherein surface-bound rotaxanes incorporate disulfide bonds in their stalks, which are encircled by cucurbit[6]uril or alpha-cyclodextrin rings, until reductive chemistry is performed, resulting in the snapping of the stalks of the rotaxanes, leading to cargo release from the inside of the nanoparticles.

    Topics: alpha-Cyclodextrins; Bridged-Ring Compounds; Imidazoles; Molecular Structure; Nanoparticles; Oxidation-Reduction; Rhodamines; Silicon Dioxide

2010
Supramolecular modification of ion chemistry: modulation of peptide charge state and dissociation behavior through complexation with cucurbit[n]uril (n = 5, 6) or alpha-cyclodextrin.
    The journal of physical chemistry. A, 2009, Feb-26, Volume: 113, Issue:8

    Electrospray Fourier transform ion cyclotron resonance mass spectrometry, ion mobility spectrometry, and computational methods were utilized to characterize the complexes between lysine or pentalysine with three prototypical host molecules: alpha-cyclodextrin (alpha-CD), cucurbit[5]uril (CB[5]), and cucurbit[6]uril (CB[6]). Ion mobility measurements show lysine forms externally bound, singly charged complexes with either alpha-CD or CB[5], but a doubly charged complex with the lysine side chain threaded through the host cavity of CB[6]. These structural differences result in distinct dissociation behaviors in collision-induced dissociation (CID) experiments: the alpha-CD complex dissociates via the simple loss of intact lysine, whereas the CB[5] complex dissociates to yield [CB[5] + H(3)O](+), and the CB[6] complex loses neutral NH(3) and CO, the product ion remaining a doubly charged complex. These results are consistent with B3LYP/6-31G* binding energies (kJ mol(-1)) of D(Lys + H(+)-alpha-CD) = 281, D(Lys + H(+)-CB[5]) = 327, and D(Lys + 2H(2+)-CB[6]) = 600. B3LYP/6-31G* geometry optimizations show complexation with alpha-CD stabilizes the salt bridge form of protonated lysine, whereas complexation with CB[6] stabilizes doubly protonated lysine. Complexation of the larger polypeptide pentalysine with alpha-CD forms a nonspecific adduct: no modification of the pentalysine charge state distribution is observed, and dissociation occurs via the simple loss of alpha-CD. Complexation of pentalysine with the cucurbiturils is more specific: the observed charge state distribution shifts higher on complexation, and fragmentation patterns are significantly altered relative to uncomplexed pentalysine: C-terminal fragment ions appear that are consistent with charge stabilization by the cucurbiturils, and the cucurbiturils are retained on the fragment ions. Molecular mechanics calculations suggest CB[5] binds to two protonated sites on pentalysine without threading onto the peptide and that CB[6] binds two adjacent protonated sites via threading onto the peptide.

    Topics: alpha-Cyclodextrins; Bridged-Ring Compounds; Fourier Analysis; Imidazoles; Ions; Kinetics; Lysine; Models, Molecular; Molecular Conformation; Oligopeptides; Peptides; Protons; Quantum Theory; Spectrometry, Mass, Electrospray Ionization; Static Electricity; Thermodynamics

2009