alpha-chymotrypsin and epigallocatechin-gallate

alpha-chymotrypsin has been researched along with epigallocatechin-gallate* in 4 studies

Other Studies

4 other study(ies) available for alpha-chymotrypsin and epigallocatechin-gallate

ArticleYear
Green tea polyphenol (-) -epigallocatechin-3-gallate promotes the rapid protein kinase C- and proteasome-mediated degradation of Bad: implications for neuroprotection.
    Journal of neurochemistry, 2007, Volume: 100, Issue:4

    The aim of the present study was to gain a deeper insight into the cell signaling pathways involved in the neuroprotection/neurorescue activity of the major green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG). EGCG (1 micro m) caused an immediate (30 min) down-regulation (approximately 40%) of Bad protein levels, and a more pronounced reduction after 24 h (55%) in the human neuroblastoma cell line SH-SY5Y. Co-treatment with EGCG and the protein synthesis inhibitor cycloheximide prominently shortened Bad half-life, with as little as 30% of the Bad protein content remaining after 2 h, suggesting an effect of EGCG on Bad protein degradation. Accordingly, the proteasome inhibitors MG-132 and lactacystin damped Bad down-regulation by EGCG. The general protein kinase C (PKC) inhibitor GF109203X, or the down-regulation of conventional and novel PKC isoforms, abolished EGCG-induced Bad decline. However, no inhibition was seen with the cell-permeable myristoylated pseudosubstrate inhibitor of the atypical PKCzeta isoform. The enforced expression of Bad for up to 72 h rendered the cells more susceptible to serum deprivation-induced cell death, whereas EGCG treatment significantly improved cell viability (up to 1.6-fold). The present study reveals a novel pathway in the neuroprotective mechanism of the action of EGCG, which involves a rapid PKC-mediated degradation of Bad by the proteasome.

    Topics: bcl-Associated Death Protein; Blotting, Western; Catechin; Cell Line, Tumor; Cell Survival; Chymotrypsin; Drug Interactions; Enzyme Inhibitors; Gene Expression Regulation; Humans; Models, Biological; Neuroblastoma; Neuroprotective Agents; Proteasome Endopeptidase Complex; Protein Kinase C; Time Factors; Transfection

2007
A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent.
    Cancer research, 2007, May-01, Volume: 67, Issue:9

    The most abundant and biologically active green tea catechin, (-)-epigallocatechin-3-gallate or (-)-EGCG, has been shown to act as a proteasome inhibitor and tumor cell death inducer. However, (-)-EGCG is unstable under physiologic conditions and has poor bioavailability. Previously, in an attempt to increase the stability of (-)-EGCG, we introduced peracetate protections to its reactive hydroxyl groups and showed that this peracetate-protected (-)-EGCG [Pro-EGCG (1); formerly named compound 1] could be converted into (-)-EGCG under cell-free conditions. In the current study, we provide evidence that when cultured human breast cancer MDA-MB-231 cells were treated with Pro-EGCG (1), (-)-EGCG was not only converted but also accumulated, accompanied by enhanced levels of proteasome inhibition, growth suppression, and apoptosis induction, compared with cells treated with natural (-)-EGCG. To investigate the potential use of Pro-EGCG (1) as a novel prodrug that converts to a cellular proteasome inhibitor and anticancer agent in vivo, MDA-MB-231 tumors were induced in nude mice, followed by treatment with Pro-EGCG (1) or (-)-EGCG for 31 days. Results of this in vivo study showed a significant inhibition of breast tumor growth by Pro-EGCG (1), compared with (-)-EGCG, associated with increased proteasome inhibition and apoptosis induction in tumor tissues. In conclusion, we have shown that Pro-EGCG (1) increases the bioavailability, stability, and proteasome-inhibitory and anticancer activities of (-)-EGCG in human breast cancer cells and tumors, suggesting its potential use for cancer prevention and treatment.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Breast Neoplasms; Catechin; Cell Growth Processes; Cell Line, Tumor; Chromatography, High Pressure Liquid; Chymotrypsin; Female; Humans; Mice; Mice, Nude; Peracetic Acid; Prodrugs; Protease Inhibitors; Xenograft Model Antitumor Assays

2007
Methylation of green tea polyphenols affects their binding to and inhibitory poses of the proteasome beta5 subunit.
    International journal of molecular medicine, 2006, Volume: 18, Issue:4

    Previously, we showed that ester carbon-containing tea polyphenols, including (-)-epigallocatechin gallate [(-)-EGCG] and (-)-epicatechin-3-gallate [(-)-ECG], potently inhibit proteasomal chymotrypsin-like activity. In addition, our in silico docking study suggested that a particular pose of (-)-EGCG could lead to potential covalent modification of the N-terminal threonine (Thr 1) of the proteasome beta5 subunit in the chymotrypsin-like active site. It has been suggested that some major biotransformation reactions, such as methylation, could result in reduced biological activity of (-)-EGCG in vivo. We hypothesize that methylation reduces binding of (-)-EGCG to the beta5 subunit of the proteasome and, therefore, decreases its proteasomal chymotrypsin-like-inhibitory potency. Here, we report that, while methylation has no effect on nucleophilic susceptibility of (-)-EGCG and (-)-ECG, it may disrupt the ability of these polyphenols to interact with Thr 1 of the proteasome beta5 subunit. In silico docking shows that methylation results in the tea polyphenols' ester carbon being moved away or blocked entirely from Thr 1. Additionally, methylation impairs the ability of (-)-EGCG and (-)-ECG to dock in a consistent low energy pose. These observations, no change in nucleophilic susceptibility, moving or blocking the ester carbon from Thr 1, and lack of a consistent docking pose, suggest that methylation disrupts the ability of (-)-EGCG and (-)-ECG to bind to the proteasome beta5 subunit, which may then diminish their proteasomal chymotrypsin-inhibitory and, therefore, other biological activities.

    Topics: Catechin; Chymotrypsin; Dose-Response Relationship, Drug; Flavonoids; Methylation; Models, Molecular; Molecular Conformation; Phenols; Polyphenols; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Binding; Protein Subunits; Tea

2006
Docking studies and model development of tea polyphenol proteasome inhibitors: applications to rational drug design.
    Proteins, 2004, Jan-01, Volume: 54, Issue:1

    Previously, we demonstrated that natural and synthetic ester bond-containing green tea polyphenols were potent and specific non-peptide proteasome inhibitors. However, the molecular mechanism of inhibition is currently unknown. Here, we report that inhibition of the chymotrypsin activity of the 20S proteasome by (-)-epigallocatechin-3-gallate (EGCG) is time-dependent and irreversible, implicating acylation of the beta5-subunit's catalytic N-terminal threonine (Thr 1). This knowledge is used, along with in silico docking experiments, to aid in the understanding of binding and inhibition. On the basis of these docking experiments, we propose that (-)-EGCG binds the chymotrypsin site in an orientation and conformation that is suitable for a nucleophilic attack by Thr 1. Consistently, the distance from the electrophilic carbonyl carbon of (-)-EGCG to the hydroxyl group of Thr 1 was measured as 3.18 A. Furthermore, the A ring of (-)-EGCG acts as a tyrosine mimic, binding to the hydrophobic S1 pocket of the beta5-subunit. In the process, the (-)-EGCG scissile bond may become strained, which could lower the activation energy for attack by the hydroxyl group of Thr 1. This model is validated by comparison of predicted and actual activities of several EGCG analogs, either naturally occurring, previously synthesized, or rationally synthesized.

    Topics: Amides; Binding Sites; Camellia sinensis; Catechin; Chymotrypsin; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Drug Design; Flavonoids; Models, Molecular; Multienzyme Complexes; Phenols; Polyphenols; Proteasome Endopeptidase Complex; Protein Binding; Protein Subunits

2004