alpha-chymotrypsin has been researched along with 4-4--dinitro-2-2--stilbenedisulfonic-acid* in 3 studies
3 other study(ies) available for alpha-chymotrypsin and 4-4--dinitro-2-2--stilbenedisulfonic-acid
Article | Year |
---|---|
Chemical modification and labeling of glutamate residues at the stilbenedisulfonate site of human red blood cell band 3 protein.
A new method has been developed for the chemical modification and labeling of carboxyl groups in proteins. Carboxyl groups are activated with Woodward's reagent K (N-ethyl-5-phenylisoxazolium 3'-sulfonate), and the adducts are reduced with [3H]BH4. The method has been applied to the anion transport protein of the human red blood cell (band 3). Woodward's reagent K is a reasonably potent inhibitor of band 3-mediated anion transport; a 5-min exposure of intact cells to 2 mM reagent at pH 6.5 produces 80% inhibition of transport. The inhibition is a consequence of modification of residues that can be protected by 4,4'-dinitrostilbene-2,2'-disulfonate. Treatment of intact cells with Woodward's reagent K followed by B3H4 causes extensive labeling of band 3, with minimal labeling of intracellular proteins such as spectrin. Proteolytic digestion of the labeled protein reveals that both the 60- and the 35-kDa chymotryptic fragments are labeled and that the labeling of each is inhibitable by stilbenedisulfonate. If the reduction is performed at neutral pH the major labeled product is the primary alcohol corresponding to the original carboxylic acid. Liquid chromatography of acid hydrolysates of labeled affinity-purified band 3 shows that glutamate but not aspartate residues have been converted into the hydroxyl derivative. This is the first demonstration of the conversion of a glutamate carboxyl group to an alcohol in a protein. The labeling experiments reveal that there are two glutamate residues that are sufficiently close to the stilbenedisulfonate site for their labeling to be blocked by 4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate and 4,4'-dinitrostilbene-2,2'-disulfonate. Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Anion Exchange Protein 1, Erythrocyte; Chemical Phenomena; Chemistry; Chromatography, High Pressure Liquid; Chromatography, Ion Exchange; Chymotrypsin; Glutamates; Glutamic Acid; Humans; Isoxazoles; Membrane Proteins; Methylation; Molecular Weight; Stilbenes | 1987 |
Localization of a site of intermolecular cross-linking in human red blood cell band 3 protein.
Subunit interactions in the band 3 protein of the human red blood cell membrane have been examined by a combination of cross-linking, chemical labeling, and in situ proteolysis. In agreement with Staros (Staros, J. V. (1982) Biochemistry 21, 3950-3955), we find that the membrane-impermeant active ester bis(sulfosuccinimidyl) suberate (BSSS) cross-links band 3 in intact cells to a dimer, with no formation of higher oligomer. Combined cross-linking of the outer surface with BSSS and the cytoplasmic domain with Cu2+/o-phenanthroline does not produce significant covalent tetramer of band 3 (beyond that produced by Cu2+/o-phenanthroline alone). Therefore, the membrane domains and cytoplasmic domains of the same pair of subunits are cross-linked to each other. 4,4'-Diisothiocyanodihydrostilbene-2,2'-disulfonate (H2DIDS) is known to form a covalent cross-link between complementary chymotryptic fragments (Mr 60,000 and 35,000). Edman degradation of band 3 from H2DIDS/chymotrypsin-treated cells shows that the H2DIDS cross-link is between fragments of the same subunit. In contrast, BSSS forms both intramolecular and intermolecular cross-links between complementary chymotryptic fragments. No intermolecular cross-links between two 35,000-dalton or two 60,000-dalton fragments are detectable. We have localized one end of the BSSS intermolecular cross-link to within 4 residues of the exofacial chymotrypsin cleavage site. The polypeptide sequence on each side of the site suggests that hydrophobic membrane-crossing segments emerge at the cell surface near the site of intermolecular cross-linking. This is the first detailed information available on the regions of the band 3 primary structure near the interface between subunits. Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Anion Exchange Protein 1, Erythrocyte; Chymotrypsin; Humans; Macromolecular Substances; Molecular Weight; Peptide Fragments; Protein Conformation; Stilbenes; Succinimides | 1985 |
The minimal structure containing the band 3 anion transport site. A 35Cl NMR study.
35Cl NMR, which enables observation of chloride binding to the anion transport site on band 3, is used in the present study to determine the minimal structure containing the intact transport site. Removal of cytoskeletal and other nonintegral membrane proteins, or removal of the 40-kDa cytoskeletal domain of band 3, each leave the transport site intact. Similarly, cleavage of the 52-kDa transport domain into 17- and 35-kDa fragments by chymotrypsin leaves the transport site intact. Extensive proteolysis by papain reduces the integral red cell membrane proteins to their transmembrane segments. Papain treatment removes approximately 60% of the extramembrane portion of the transport domain and produces small fragments primarily in the range 3-7 kDa, with 5 kDa being most predominant. Papain treatment damages, but does not destroy, chloride binding to the transport site; thus, the minimal structure containing the transport site is composed solely of transmembrane segments. In short, the results are completely consistent with a picture in which the transport site is buried in the membrane where it is protected from proteolysis; the transmembrane segments that surround the transport site are held together by strong attractive forces within the bilayer; and the transport site is accessed by solution chloride via an anion channel leading from the transport site to the solution. Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Anion Exchange Protein 1, Erythrocyte; Anions; Bicarbonates; Binding Sites; Biological Transport; Chlorides; Chymotrypsin; Cytoskeleton; Erythrocyte Membrane; Humans; Hydrogen-Ion Concentration; Magnetic Resonance Spectroscopy; Membrane Proteins; Osmolar Concentration; Papain; Peptide Fragments; Phenylglyoxal; Stilbenes | 1985 |