alpha-bulnesene has been researched along with patchouli-alcohol* in 3 studies
1 review(s) available for alpha-bulnesene and patchouli-alcohol
Article | Year |
---|---|
A Comprehensive Review on the Phytochemical Constituents and Pharmacological Activities of Pogostemon cablin Benth.: An Aromatic Medicinal Plant of Industrial Importance.
Pogostemon cablin Benth. (patchouli) is an important herb which possesses many therapeutic properties and is widely used in the fragrance industries. In traditional medicinal practices, it is used to treat colds, headaches, fever, nausea, vomiting, diarrhea, abdominal pain, insect and snake bites. In aromatherapy, patchouli oil is used to relieve depression, stress, calm nerves, control appetite and to improve sexual interest. Till now more than 140 compounds, including terpenoids, phytosterols, flavonoids, organic acids, lignins, alkaloids, glycosides, alcohols, aldehydes have been isolated and identified from patchouli. The main phytochemical compounds are patchouli alcohol, α-patchoulene, β-patchoulene, α-bulnesene, seychellene, norpatchoulenol, pogostone, eugenol and pogostol. Modern studies have revealed several biological activities such as antioxidant, analgesic, anti-inflammatory, antiplatelet, antithrombotic, aphrodisiac, antidepressant, antimutagenic, antiemetic, fibrinolytic and cytotoxic activities. However, some of the traditional uses need to be verified and may require standardizing and authenticating the bioactivity of purified compounds through scientific methods. The aim of the present review is to provide comprehensive knowledge on the phytochemistry and pharmacological activities of essential oil and different plant extracts of patchouli based on the available scientific literature. This information will provide a potential guide in exploring the use of main active compounds of patchouli in various medical fields. Topics: Anti-Infective Agents; Aromatherapy; Eugenol; Lamiaceae; Oils, Volatile; Phytochemicals; Plant Oils; Plants, Medicinal; Sesquiterpenes; Sesquiterpenes, Guaiane; Terpenes | 2015 |
2 other study(ies) available for alpha-bulnesene and patchouli-alcohol
Article | Year |
---|---|
Improving the productivity of a multidimensional chromatographic preparative system by collecting pure chemicals after each of three chromatographic dimensions.
The enhanced sample collection capability of a heart-cutting three-dimensional GC-prep system is reported. In its original configuration, a highly pure component can be usually collected after the last (3D) column outlet by means of a dedicated preparative station. The latter is located after the last chromatographic column, and this poses the requirement for multiple heart cuts even for those components showing satisfactory degree of purity after the first (or second) separation dimension. The feasibility to collect pure components after each chromatographic dimension is here described, employing a three-dimension MDGC system equipped with high-temperature valves, located inside the first and second GC ovens, with the aim to improve the productivity of the collection procedure. In addition to a commercial preparative collector located at the 3D outlet, two laboratory-made collection systems were applied in the first and second dimension, reached by the effluent to be collected trough a high-temperature valve switching the heart-cut fraction between either the detector (FID), or the collector. Highly pure sesquiterpene components were collected, namely: patchouli alcohol after the first column [poly(5% diphenyl/95% dimethylsiloxane)], α-bulnesene after a second column coated with high molecular weight polyethylene glycol, and α-guaiene after an ionic-liquid based column (SLB-IL60), used as the third dimension. Purity levels ranging from 85 to 95% were achieved with an average collection recovery of 90% (n=5). The following average amounts were collected per run: 160μg for α-guaiene, 295μg for α-bulnesene, and 496μg for patchouli alcohol. Topics: Azulenes; Chromatography, Gas; Dimethylpolysiloxanes; Polyethylene Glycols; Sesquiterpenes; Sesquiterpenes, Guaiane | 2016 |
Chemical diversity in the essential oil of Indian valerian (Valeriana jatamansi Jones).
To explore the diversity in the essential oil yield and composition of Valeriana jatamansi Jones (syn. V. wallichii DC) growing wild in Uttarakhand (Western Himalaya), 17 populations were collected from different locations and grown under similar conditions. Comparative results showed considerable variations in the essential oil yield and composition. The essential oil yield varied from 0.21 to 0.46% in the fresh roots and rhizomes of different populations of V. jatamansi. Analysis of the essential oils by GC (RI) and GC/MS and the subsequent classification by principal component analysis (PCA) resulted in six clusters with significant variations in their terpenoid composition. Major components in the essential oils of the different populations were patchouli alcohol (1; 13.4-66.7%), α-bulnesene (3; <0.05-23.5%), α-guaiene (4; 0.2-13.3%), guaiol (5; <0.05-12.2%), seychellene (6; 0.2-9.9%) viridiflorol (<0.05-7.3%), and β-gurjunene (7; 0.0-7.1%). V. jatamansi populations with contents of 1 higher than 60% may be utilized commercially in perfumery. Topics: Bridged Bicyclo Compounds; Chromatography, Gas; Cyclopropanes; Gas Chromatography-Mass Spectrometry; India; Oils, Volatile; Plant Roots; Principal Component Analysis; Rhizome; Sesquiterpenes; Sesquiterpenes, Guaiane; Terpenes; Valerianaceae | 2011 |