aloesaponarin-ii has been researched along with actinorhodin* in 2 studies
2 other study(ies) available for aloesaponarin-ii and actinorhodin
Article | Year |
---|---|
Minimal polyketide pathway expression in an actinorhodin cluster-deleted and regulation-stimulated Streptomyces coelicolor.
Along with traditional random mutagenesis-driven strain improvement, cloning and heterologous expression of Streptomyces secondary metabolite gene clusters have become an attractive complementary approach to increase its production titer, of which regulation is typically under tight control via complex multiple regulatory networks present in a metabolite low-producing wild-type strain. In this study, we generated a polyketide non-producing strain by deleting the entire actinorhodin cluster from the chromosome of a previously generated S. coelicolor mutant strain, which was shown to stimulate actinorhodin biosynthesis through deletion of two antibiotic downregulators as well as a polyketide precursor flux downregulator (Kim et al. in Appl Environ Microbiol 77:1872-1877, 2011). Using this engineered S. coelicolor mutant strain as a surrogate host, a model minimal polyketide pathway for aloesaponarin II, an actinorhodin shunt product, was cloned in a high-copy conjugative plasmid, followed by functional pathway expression and quantitative metabolite analysis. Aloesaponarin II production was detected only in the presence of a pathway-specific regulatory gene, actII-ORF4, and its production level was the highest in the actinorhodin cluster-deleted and downregulator-deleted mutant strain, implying that this engineered polyketide pathway-free and regulation-optimized S. coelicolor mutant strain could be used as a general surrogate host for efficient expression of indigenous or foreign polyketide pathways derived from diverse actinomycetes in nature. Topics: Anthraquinones; Anti-Bacterial Agents; Gene Deletion; Gene Expression Regulation, Bacterial; Genes, Regulator; Polyketides; Streptomyces coelicolor | 2012 |
Chemical characterisation of disruptants of the Streptomyces coelicolor A3(2) actVI genes involved in actinorhodin biosynthesis.
The actVI genetic region of Streptomyces coelicolor A3(2) is part of the biosynthetic gene cluster of actinorhodin (ACT), the act cluster, consisting of six ORFs: ORFB, ORFA, ORF1, ORF2, ORF3, ORF4. A newly devised method of ACT detection with a combination of HPLC and LC/MS was applied to the analysis of the disruptants of each ORF. ACT was produced by those of ORFB, ORFA, ORF3, and ORF4. Instead of ACT, the ORF1 disruptant produced 3,8-dihydroxy-1-methylanthraquinone-2-carboxylic acid (DMAC) and aloesaponarin II as shunt products. The ORF2 disruptant gave 4-dihydro-9-hydroxy-1-methyl-10-oxo-3-H-naphtho-[2,3-c]-pyran-3-(S)-acet ic acid, (S)-DNPA. These results support our previous proposal for stereospecific pyran ring formation in the biosynthesis of ACT, most importantly suggesting that the actVI-ORF2 product would recognize (S)-DNPA as a substrate for stereospecific reduction at C-15. The disruptant of ORFA produced (S)-DNPA together with ACT, suggesting that actVI-ORFA might play a role such as stabilising the multicomponent, type II PKS complex. Topics: Anthraquinones; Bacterial Proteins; Chromatography, High Pressure Liquid; Culture Media; Gene Expression Regulation, Bacterial; Mass Spectrometry; Multigene Family; Mutation; Naphthalenes; Pyrans; Streptomyces | 2000 |