aliskiren has been researched along with benazeprilat* in 4 studies
4 other study(ies) available for aliskiren and benazeprilat
Article | Year |
---|---|
Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors.
Diabetes-induced organ damage is significantly associated with the activation of the renin-angiotensin system (RAS). Recently, several studies have demonstrated a change in the RAS from an extracellular to an intracellular system, in several cell types, in response to high ambient glucose levels. In cardiac myocytes, intracellular angiotensin (ANG) II synthesis and actions are ACE and AT1 independent, respectively. However, a role of this system in diabetes-induced organ damage is not clear.. To determine a role of the intracellular ANG II in diabetic cardiomyopathy, we induced diabetes using streptozotocin in AT1a receptor deficient (AT1a-KO) mice to exclude any effects of extracellular ANG II. Further, diabetic animals were treated with a renin inhibitor aliskiren, an ACE inhibitor benazeprilat, and an AT1 receptor blocker valsartan.. AT1a-KO mice developed significant diastolic and systolic dysfunction following 10 wks of diabetes, as determined by echocardiography. All three drugs prevented the development of cardiac dysfunction in these animals, without affecting blood pressure or glucose levels. A significant down regulation of components of the kallikrein-kinin system (KKS) was observed in diabetic animals, which was largely prevented by benazeprilat and valsartan, while aliskiren normalized kininogen expression.. These data indicated that the AT1a receptor, thus extracellular ANG II, are not required for the development of diabetic cardiomyopathy. The KKS might contribute to the beneficial effects of benazeprilat and valsartan in diabetic cardiomyopathy. A role of intracellular ANG II is suggested by the inhibitory effects of aliskiren, which needs confirmation in future studies. Topics: Amides; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Benzazepines; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Disease Models, Animal; Down-Regulation; Fumarates; Kallikreins; Kininogens; Kinins; Mice; Mice, Knockout; Myocytes, Cardiac; Receptor, Angiotensin, Type 1; Renin; Renin-Angiotensin System; Tetrazoles; Ultrasonography; Valine; Valsartan | 2013 |
Direct renin inhibition prevents cardiac dysfunction in a diabetic mouse model: comparison with an angiotensin receptor antagonist and angiotensin-converting enzyme inhibitor.
Hyperglycaemia up-regulates intracellular AngII (angiotensin II) production in cardiac myocytes, effects of which are blocked more effectively by renin inhibition than ARBs (angiotensin receptor blockers) or ACEis (angiotensin-converting enzyme inhibitors). In the present study, we determined whether renin inhibition is more effective at preventing diabetic cardiomyopathy than an ARB or ACEi. Diabetes was induced in adult mice for 10 weeks by STZ (streptozotocin). Diabetic mice were treated with insulin, aliskiren (a renin inhibitor), benazeprilat (an ACEi) or valsartan (an ARB) via subcutaneous mini-pumps. Significant impairment in diastolic and systolic cardiac functions was observed in diabetic mice, which was completely prevented by all three RAS (renin-angiotensin system) inhibitors. Hyperglycaemia significantly increased cardiac oxidative stress and circulating inflammatory cytokines, which were blocked by aliskiren and benazeprilat, whereas valsartan was partially effective. Diabetes increased cardiac PRR (prorenin receptor) expression and nuclear translocation of PLZF (promyelocytic zinc finger protein), which was completely prevented by aliskiren and valsartan, and partially by benazeprilat. Renin inhibition provided similar protection of cardiac function to ARBs and ACEis. Activation of PLZF by PRR represented a novel mechanism in diabetic cardiomyopathy. Differential effects of the three agents on oxidative stress, cytokines and PRR expression suggested subtle differences in their mechanisms of action. Topics: Amides; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Benzazepines; Blood Pressure; Diabetes Mellitus, Experimental; Fumarates; Heart; Humans; Male; Mice; Mice, Inbred C57BL; Myocardium; Oxidative Stress; Prorenin Receptor; Receptors, Cell Surface; Renin; Tetrazoles; Valine; Valsartan | 2013 |
Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production.
The occurrence of a functional intracellular renin-angiotensin system (RAS) has emerged as a new paradigm. Recently, we and others demonstrated intracellular synthesis of ANG II in cardiac myocytes and vascular smooth muscle cells that was dramatically stimulated in high glucose conditions. Cardiac fibroblasts significantly contribute to diabetes-induced diastolic dysfunction. The objective of the present study was to determine the existence of the intracellular RAS in cardiac fibroblasts and its role in extracellular matrix deposition. Neonatal rat ventricular fibroblasts were serum starved and exposed to isoproterenol or high glucose in the absence or presence of candesartan, which was used to prevent receptor-mediated uptake of ANG II. Under these conditions, an increase in ANG II levels in the cell lysate represented intracellular synthesis. Both isoproterenol and high glucose significantly increased intracellular ANG II levels. Confocal microscopy revealed perinuclear and nuclear distribution of intracellular ANG II. Consistent with intracellular synthesis, Western analysis showed increased intracellular levels of renin following stimulation with isoproterenol and high glucose. ANG II synthesis was catalyzed by renin and angiotensin-converting enzyme (ACE), but not chymase, as determined using specific inhibitors. High glucose resulted in increased transforming growth factor-beta and collagen-1 synthesis by cardiac fibroblasts that was partially inhibited by candesartan but completely prevented by renin and ACE inhibitors. In conclusion, cardiac fibroblasts contain a functional intracellular RAS that participates in extracellular matrix formation in high glucose conditions, an observation that may be helpful in developing an appropriate therapeutic strategy in diabetic conditions. Topics: Adrenergic beta-Agonists; Amides; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Animals, Newborn; Benzazepines; Benzimidazoles; Biphenyl Compounds; Blotting, Western; Cells, Cultured; Collagen Type I; Dose-Response Relationship, Drug; Extracellular Matrix; Fibroblasts; Fumarates; Glucose; Heart Ventricles; Isoproterenol; Microscopy, Confocal; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Renin; Renin-Angiotensin System; Tetrazoles; Time Factors; Transforming Growth Factor beta; Up-Regulation | 2008 |
Aliskiren, a novel, orally effective renin inhibitor, lowers blood pressure in marmosets and spontaneously hypertensive rats.
Aliskiren is a new renin inhibitor of a novel structural class that has recently been shown to be efficacious in hypertensive patients after once-daily oral dosing. We report the results of animal experiments performed in marmosets and rats in order to characterize aliskiren before its recent investigation in humans.. The effects of aliskiren were investigated in sodium-depleted marmosets (oral dosing) and in spontaneously hypertensive rats (dosing via subcutaneous osmotic minipumps). Blood pressure (BP) and heart rate were measured by radiotelemetry.. In sodium-depleted marmosets, single oral doses of aliskiren (1-30 mg/kg) dose-dependently lowered BP. At a dose of 3 mg/kg, peak effects were observed 1 h after dosing (-30 +/- 4 mmHg, n = 6) and the response persisted for more than 12 h. A single oral dose of 3 mg/kg aliskiren was more effective than the same dose of either remikiren or zankiren, two orally active renin inhibitors previously tested in humans. Aliskiren (10 mg/kg) was at least as effective as equal doses of the AT1-receptor blocker valsartan or the angiotensin-converting enzyme inhibitor benazepril. In spontaneously hypertensive rats, aliskiren dose-dependently (10-100 mg/kg per day) decreased BP. Aliskiren also potentiated the antihypertensive effects of low doses of valsartan or benazeprilat (1 or 3 mg/kg per day).. Aliskiren is an orally effective, long-lasting renin inhibitor that shows antihypertensive efficacy in animals superior to previous renin inhibitors and at least equivalent to angiotensin-converting enzyme inhibitors and AT1-receptor blockers. Aliskiren may therefore represent an effective, novel approach to the treatment of hypertension and related disorders, alone or in combination with other antihypertensive agents. Topics: Administration, Oral; Amides; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Benzazepines; Blood Pressure; Callithrix; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Drug Interactions; Female; Fumarates; Heart Rate; Imidazoles; Injections, Intravenous; Male; Piperazines; Rats; Rats, Inbred SHR; Renin; Telemetry; Tetrazoles; Thiazoles; Valine; Valsartan | 2005 |