alamethicin and morphine-3-glucuronide

alamethicin has been researched along with morphine-3-glucuronide* in 2 studies

Other Studies

2 other study(ies) available for alamethicin and morphine-3-glucuronide

ArticleYear
Differential in vitro inhibition of M3G and M6G formation from morphine by (R)- and (S)-methadone and structurally related opioids.
    British journal of clinical pharmacology, 2006, Volume: 61, Issue:3

    To determine the in vitro kinetics of morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) formation and the inhibition potential by methadone enantiomers and structurally related opioids.. M3G and M6G formation kinetics from morphine were determined using microsomes from five human livers. Inhibition of glucuronide formation was investigated with eight inhibitors (100 microm) and the mechanism of inhibition determined for (R)- and (S)-methadone (70-500 microm) using three microsomal samples.. Glucuronide formation displayed single enzyme kinetics. The M3G Vmax (mean+/-SD) was 4.8-fold greater than M6G Vmax (555+/-110 vs. 115+/-19 nmol mg-1 protein h-1; P=0.006, mean of difference 439; 95% confidence interval 313, 565 nmol mg-1 protein h-1). Km values for M3G and M6G formation were not significantly different (1.12+/-0.37 vs. 1.11+/-0.31 mm; P=0.89, 0.02; -0.29, 0.32 mm). M3G and M6G formation was inhibited (P<0.01) with a significant increase in the M3G/M6G ratio (P<0.01) for all compounds tested. Detailed analysis with (R)- and (S)-methadone revealed noncompetitive inhibition with (R)-methadone Ki of 320+/-42 microm and 192+/-12 microm for M3G and M6G, respectively, and (S)-methadone Ki of 226+/-30 microm and 152+/-20 microm for M3G and M6G, respectively. Ki values for M3G inhibition were significantly greater than for M6G for (R)-methadone (P=0.017, 128; 55, 202 microm) and (S)-methadone (P=0.026, 75; 22, 128 microm).. Both methadone enantiomers noncompetitively inhibited the formation of morphine's primary metabolites, with greater inhibition of M6G formation compared with M3G. These findings indicate a mechanism for reduced morphine clearance in methadone-maintained patients and reduced relative formation of the opioid active M6G compared with M3G.

    Topics: Alamethicin; Analgesics, Opioid; Dextropropoxyphene; Humans; Ionophores; Methadone; Methadyl Acetate; Microsomes, Liver; Morphine Derivatives

2006
Tissue distribution and interindividual variation in human UDP-glucuronosyltransferase activity: relationship between UGT1A1 promoter genotype and variability in a liver bank.
    Pharmacogenetics, 2000, Volume: 10, Issue:8

    The variability in a liver bank and tissue distribution of three probe UDP-glucuronosyltransferase (UGT) activities were determined as a means to predict interindividual differences in expression and the contribution of extrahepatic metabolism to presystemic and systemic clearance. Formation rates of acetaminophen-O-glucuronide (APAPG), morphine-3-glucuronide (M3G), and oestradiol-3-glucuronide (E3G) as probes for UGT1A6, 2B7, and 1A1, respectively, were determined in human kidney, liver, and lung microsomes, and in microsomes from intestinal mucosa corresponding to duodenum, jejunum and ileum. While formation of E3G and APAPG were detectable in human kidney microsomes, M3G formation rates from kidney microsomes approached the levels seen in liver, indicating significant expression of UGT2B7. Interestingly, rates of E3G formation in human intestine exceeded the hepatic rates by several fold, while APAPG and M3G formation rates were low. The intestinal apparent Km value for E3G formation was essentially identical to that seen in liver, consistent with intestinal UGT1A1 expression. No UGT activities were observed in lung. Variability in APAPG and M3G activity across a bank of 20 human livers was modest (< or = 7-fold), compared to E3G formation, which varied approximately 30-fold. The E3G formation rates were found to segregate by UGT1A1 promoter genotype, with wild-type (TA)6 rates significantly greater than homozygous mutant (TA)7 individuals. Kinetic analyses were performed to demonstrate that the promoter mutation altered apparent Vmax without significantly affecting apparent Km. These results suggest that glucuronidation, and specifically UGT1A1 activity, can profoundly contribute to intestinal first pass metabolism and interindividual variability due to the expression of common allelic variants.

    Topics: Acetaminophen; Alamethicin; Alleles; Estradiol; Genetic Variation; Genotype; Glucuronosyltransferase; Homozygote; Humans; Intestines; Kidney; Kinetics; Liver; Lung; Metabolic Clearance Rate; Microsomes, Liver; Morphine; Morphine Derivatives; Mutation; Promoter Regions, Genetic; Tissue Banks; Tissue Distribution

2000