alamethicin has been researched along with 7-ethoxycoumarin* in 2 studies
2 other study(ies) available for alamethicin and 7-ethoxycoumarin
Article | Year |
---|---|
Characterization by liquid chromatography-nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry of two coupled oxidative-conjugative metabolic pathways for 7-ethoxycoumarin in human liver microsomes treated with alamethicin.
The microsomal metabolism of 7-ethoxycoumarin (7-EC) was investigated using liquid chromatography (LC)-NMR and liquid chromatography-mass spectrometry (LC-MS) to characterize the coupling of oxidative-conjugative metabolism events. Within microsomes, cytochromes P450 (P450s) and UDP-glucuronosyltransferases (UGTs) are spatially disparate, each having surface and luminal localization, respectively. To optimize cofactor and substrate transit to UGT without compromising P450 activity, the pore-forming peptide alamethicin was used for microsomal perforation. Aqueous extracts of microsomal incubations containing NADPH and UDP-glucuronic acid were injected for LC-NMR and LC-MS analysis. The analytical complementarity of LC-NMR and LC-MS permitted the identification of four metabolites (M1 to M4). The metabolites M1 and M2 are novel microsomal metabolites for 7-EC, consistent with 3-hydroxylation and subsequent glucuronidation, respectively. Metabolites M3 and M4 were 7-hydroxycoumarin (7-HC) and 7-HC glucuronide, respectively. Viewed collectively, these results illustrate the utility of alamethicin in the examination of coupled oxidative-conjugative metabolism and the synergy of LC-NMR and LC-MS in metabolite identification. Topics: 7-Alkoxycoumarin O-Dealkylase; Alamethicin; Biotransformation; Chromatography, Liquid; Coumarins; Glucuronosyltransferase; Humans; Magnetic Resonance Spectroscopy; Mass Spectrometry; Microsomes, Liver; NADP; Uridine Diphosphate Glucuronic Acid | 2002 |
In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin.
The UDP-glucuronosyltransferases (UGTs) are a superfamily of membrane-bound enzymes whose active site is localized inside the endoplasmic reticulum. Glucuronidation using human liver microsomes has traditionally involved disruption of the membrane barrier, usually by detergent treatment, to attain maximal enzyme activity. The goals of the current work were to develop a universal method to glucuronidate xenobiotic substrates using microsomes, and to apply this method to sequential oxidation-glucuronidation reactions. Three assays of UGT catalytic activity estradiol-3-glucuronidation, acetaminophen-O-glucuronidation, and morphine-3-glucuronidation, which are relatively selective probes for human UGT1A1, 1A6, and 2B7 isoforms, respectively, were developed. Treatment of microsomes with the pore-forming peptide alamethicin (50 microg/mg protein) resulted in conjugation rates 2 to 3 times the rates observed with untreated microsomes. Addition of physiological concentrations of Mg(2+) to the alamethicin-treated microsomes yielded rates that were 4 to 7 times the rates with untreated microsomes. Optimized assay conditions were found not to detrimentally affect cytochrome P450 activity as determined by effects on testosterone 6beta-hydroxylation and 7-ethoxycoumarin deethylation. Formation of estradiol-3-glucuronide displayed atypical kinetics, and data best fit the Hill equation, yielding apparent kinetic parameters of K(m)(app) = 0.017 mM, V(max)(app) = 0.4 nmol/mg/min, and n = 1.8. Formation of acetaminophen-O-glucuronide also best fit the Hill equation, with K(m)(app) = 4 mM, V(max)(app) = 1.5 nmol/mg/min, and n = 1.4. Alternatively, morphine-3-glucuronide formation displayed Michaelis-Menten kinetics, with K(m)(app) = 2 mM and V(max)(app) = 2. 5 nmol/mg/min. Finally, alamethicin treatment of microsomes was found to be effective in facilitating the sequential oxidation-glucuronidation of 7-ethoxycoumarin. Topics: Acetaminophen; Alamethicin; Analgesics, Non-Narcotic; Analgesics, Opioid; Anti-Bacterial Agents; Coumarins; Estradiol; Glucuronides; Glucuronosyltransferase; Humans; Hydrogen-Ion Concentration; In Vitro Techniques; Kinetics; Microsomes, Liver; Morphine; Oxidation-Reduction; Testosterone | 2000 |