agar and porphyran

agar has been researched along with porphyran* in 4 studies

Reviews

1 review(s) available for agar and porphyran

ArticleYear
Emerging Biomedical Applications of Algal Polysaccharides.
    Current pharmaceutical design, 2019, Volume: 25, Issue:11

    Over the past two decades, there have been substantial progress and a growing body of research on using natural polymeric biomaterials in emerging biomedical applications. Among different natural biopolymers, polysaccharides have gained considerable attraction among biomedical scientists and surgeons due to their biocompatibility, biodegradability, anti-inflammatory, and antimicrobial properties. In recent years, algalbased polysaccharides including agar, alginate, and carrageenan, have been broadly suggested for different biomedical applications.. The aim of this paper is discussing various possible applications of algal-based polysaccharides in biomedical engineering particularly in controlled drug delivery systems. The main properties of each algal polysaccharide will be discussed, and particular drug delivery applications will be presented.. Algal polysaccharides can be detected in a group of photosynthetic unite as their key biomass constituents. They provide a range of variety in their size, shape, liquefaction, chemical stability, and crosslinking ability. In addition, algal polysaccharides have shown exceptional gelling properties including stimuli-responsive behavior, softness, and swelling properties.. All the mentioned properties of alga polysaccharides lead to their successful usage in biomedical applications specially targeted and controlled drug delivery systems such as particles, capsules, and gels.

    Topics: Agar; Alginates; Biocompatible Materials; Carrageenan; Drug Delivery Systems; Phaeophyceae; Polysaccharides; Rhodophyta; Sepharose

2019

Other Studies

3 other study(ies) available for agar and porphyran

ArticleYear
Production of neoagarobiose from agar through a dual-enzyme and two-stage hydrolysis strategy.
    International journal of biological macromolecules, 2020, Oct-01, Volume: 160

    The oligosaccharides from agar hydrolysis have special biological activities, and exhibit application prospects in cosmetic, food and pharmaceutical industry. In this study, two novel β-agarases (AgaA and AgaB) were screened and characterized. It was found that the AgaA was an endo-type agarase which could efficiently hydrolyzed agar or agarose to form neoagarobiose (NA2), neoagarotetraose (NA4) and neoagarohexaose (NA6), while the AgaB was an exo-type and bifunctional enzyme that showed activities towards both agarose and porphyran. Based on the properties of the two enzymes, we developed modular strategy for enzymatic production of neoagarobiose through a two-stage hydrolysis reaction. The cheap substrate agar was first liquefied by AgaA at high temperature to form neoagaroligosaccharides, which together with the sulfated polysaccharides were homogenized by AgaB to form neoagarobiose as the final product. High concentration of agar (10 g/L) was almost completely converted into neoagarobiose with high purity.

    Topics: Agar; Disaccharides; Galactosides; Glycoside Hydrolases; Hydrolysis; Oligosaccharides; Sepharose

2020
Purification and characterization of arylsulfatase from Sphingomonas sp. AS6330.
    Applied microbiology and biotechnology, 2004, Volume: 63, Issue:5

    Arylsulfatase was purified from Sphingomonas sp. AS6330 through ionic exchange, hydrophobic- and gel-chromatographies. The purity increased 12,800-fold with approximately 19.1% yield against cell homogenate. The enzyme was a monomeric protein with apparent molecular weight of 62 kDa as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis, and 41 kDa as determined by gel filtration. The enzyme had optimum reaction conditions for hydrolysis of sulfate ester bonds in agar and p-nitrophenyl sulfate (NPS) at pH 7.0 and 45 degrees C, with a specific activity of 3.93 and 97.2 U, respectively. The enzyme showed higher activity towards agar than other sulfated marine polysaccharides such as porphyran, fucoidan and carrageenan. The K(m) and V(max) of the enzyme for hydrolysis of NPS were 54.9 microM and 113 mM/min, respectively. With reaction of 200 g agar with 100 U arylsulfatase for 8 h at 45 degrees C, gel strength increased 2.44-fold, and 97.7% of the sulfate in the agar was hydrolyzed.

    Topics: Agar; Arylsulfatases; Biotransformation; Carrageenan; Chromatography, Gel; Chromatography, Ion Exchange; Enzyme Stability; Hydrogen-Ion Concentration; Industrial Microbiology; Molecular Weight; Nitrobenzenes; Polysaccharides; Sepharose; Sphingomonas; Substrate Specificity; Temperature

2004
Beta-agarases I and II from Pseudomonas atlantica. Substrate specificities.
    European journal of biochemistry, 1983, Dec-01, Volume: 137, Issue:1-2

    Beta-Agarase I and II were characterised by their action on agar-type polysaccharides and oligosaccharides. Beta-Agarase I, an endo-enzyme, was specific for regions containing a minimum of one unsubstituted neoagarobiose unit [3,6-anhydro-alpha-L-galactopyranosyl-(1 leads to 3)-D-galactose], hydrolysing at the reducing side of this moiety. Yaphe demonstrated that agar was degraded by this enzyme to neoagaro-oligosaccharides limited by the disaccharide but with a predominance of the tetramer [Yaphe, W. (1957) Can. J. Microbiol. 3, 987-993]. Beta-Agarase I slowly degraded neoagarohexaose but not the homologous tetrasaccharide. [1-3H]Neoagarohexaitol was cleaved to neoagarotetraose and [1-3H]neoagarobiitol. The highly substituted agar, porphyran was degraded to methylated, sulphated and unsubstituted neoagaro-oligosaccharides which were invariably terminated at the reducing end by unsubstituted neoagarobiose. The novel enzyme, beta-agarase II, was shown to be an endo-enzyme. Preliminary evidence indicated this enzyme was specific for sequences containing neoagarobiose and/or 6(1)-O-methyl-neoagarobiose. It degraded agar to neoagaro-oligosaccharides of which the disaccharide was limiting and predominant. Beta-Agarase II rapidly degraded isolated neogarotetraose and neoagarohexaose to the disaccharide. With [1-3H]neoagarohexaitol, exo-action was observed, the alditol being cleaved to neoagarobiose and [1-3H]neoagarotetraitol. Neoagarotetraitol was hydrolysed at 4% of the rate observed for the hexaitol. Porphyran was degraded to oligosaccharides, the neutral fraction comprising 24% of the starting carbohydrate. This fraction was almost exclusively disaccharides (22.4%) containing neoagarobiose (7.4%) and 6(1)-O-methyl-neoagarobiose (15%). Beta-Agarase II is probably the 'beta-neoagarotetraose hydrolase' reported by Groleau and Yaphe as an exoenzyme against neoagaro-oligosaccharides [Groleau, D. and Yaphe, W. (1977) Can. J. Microbiol. 23, 672-679].

    Topics: Agar; Glycoside Hydrolases; Oligosaccharides; Pseudomonas; Sepharose; Substrate Specificity

1983