agar and 2-heptanone

agar has been researched along with 2-heptanone* in 2 studies

Other Studies

2 other study(ies) available for agar and 2-heptanone

ArticleYear
Biological activity of volatiles produced by the strains of two Pseudomonas and two Serratia species.
    Folia microbiologica, 2023, Volume: 68, Issue:4

    Volatile compounds emitted by bacteria can play a significant role in interacting with microorganisms, plants, and other organisms. In this work, we studied the effect of total gaseous mixtures of organic as well as inorganic volatile compounds (VCs) and individual pure volatile organic compounds (VOCs: ketones 2-nonanone, 2-heptanone, 2-undecanone, a sulfur-containing compound dimethyl disulfide) synthesized by the rhizosphere Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270 strains, the soil-borne strain P. fluorescens B-4117, and the spoiled meat isolate S. proteamaculans 94 strain on Arabidopsis thaliana plants (on growth and germination of seeds). We demonstrated that total mixtures of volatile compounds emitted by these strains grown on Luria-Bertani agar, Tryptone Soya Agar, and Potato Dextrose Agar media inhibited the A. thaliana growth. When studied bacteria grew on Murashige and Skoog (MS) agar medium, volatile mixtures produced by bacteria could stimulate the growth of plants. Volatile compounds of bacteria slowed down the germination of plant seeds; in the presence of volatile mixtures of P. fluorescens B-4117, the seeds did not germinate. Of the individual VOCs, 2-heptanone had the most potent inhibitory effect on seed germination. We also showed that the tested VOCs did not cause oxidative stress in Escherichia coli cells using specific lux-biosensors. VOCs reduced the expression of the lux operon from the promoters of the katG, oxyS, and soxS genes (whose products involved in the protection of cells from oxidative stress) caused by the action of hydrogen peroxide and paraquat, respectively.

    Topics: Agar; Escherichia coli; Pseudomonas; Serratia; Volatile Organic Compounds

2023
Spoilage potential of Vagococcus salmoninarum in preservative-free, MAP-stored brown shrimp and differentiation from Brochothrix thermosphacta on streptomycin thallous acetate actidione agar.
    Journal of applied microbiology, 2016, Volume: 120, Issue:5

    During a previous study concerning brown shrimp (Crangon crangon), selective streptomycin thallous acetate actidione (STAA) agar was used to determine the growth of Brochothrix thermosphacta. However, the growth of Vagococcus salmoninarum on this medium was also noticed. This study explores the spoilage potential of this organism when inoculated on sterile shrimp.. Isolates growing on STAA were identified using (GTG)5 clustering followed by partial 16S rRNA gene sequence analysis. Their biochemical spoilage potential was analysed for H2 S production and enzymatic activities were tested using an APIZYM test. Headspace solid phase micro-extraction (SPME) and gas chromatography-mass spectrometry (GC-MS) were used to analyse the volatile organic compounds (VOCs) produced during storage of inoculated shrimp.. Fifty-five per cent of isolates taken from STAA could be identified as V. salmoninarum, while no apparent morphological difference with B. thermosphacta isolates was identified upon the prescribed incubation conditions. For isolates identified as V. salmoninarum, production of 2-heptanone, 2-nonanone, 2-undecanone was found, as was the possibility to form H2 S.. When using the STAA medium for detecting B. thermosphacta, one should consider the possible abundant presence of V. salmoninarum as well. Based on this study, V. salmoninarum does not exhibit great spoilage potential, although it can produce H2 S and formed VOCs which are also found in other spoiled seafood products.

    Topics: Agar; Animals; Brochothrix; Cycloheximide; Enterococcaceae; Food Contamination; Food Packaging; Gas Chromatography-Mass Spectrometry; Ketones; Organometallic Compounds; Penaeidae; RNA, Ribosomal, 16S; Seafood; Shellfish; Streptomycin; Volatile Organic Compounds

2016