agar has been researched along with 2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid* in 3 studies
3 other study(ies) available for agar and 2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid
Article | Year |
---|---|
Carboxymethylcellulose/agar-based functional film incorporated with nitrogen-doped polyethylene glycol-derived carbon dots for active packaging applications.
The present investigation demonstrates the role of nitrogen doping on polyethylene glycol (PEG)-derived carbon dots on optical, antibacterial, and antioxidant activity. CDs' average size and surface charge were determined using transmission electron microscopy (TEM) and a zeta sizer with 2.14 ± 0.6 nm and -20 mV, respectively. Though CDs without N-doping (PCD) did not show any significant antioxidant and antimicrobial activities, the CDs doped with nitrogen (NPCD) showed potent antioxidant (25% and 100% DPPH and ABTS radical scavenging activity) and significant antimicrobial activity against Gram-positive (1.8 cm inhibition zone) and Gram-negative (1.4 cm) bacteria. Both carbon dots were loaded into the carboxymethyl cellulose (CMC)/agar-based film with different concentrations (4 and 8%) and showed a significant increase in the physicochemical properties, and UV-blocking property was increased from 53.7 to 79.9% without sacrificing the transparency. The NPCD-loaded film also showed high antioxidant (DPPH 12.7% and ABTS 67%) and potent antibacterial activity. In particular, the CMC/agar film loaded with 8% NPCD destroyed Escherichia coli and Listeria monocytogenes completely after 6 h of incubation. Topics: Agar; Anti-Bacterial Agents; Anti-Infective Agents; Antioxidants; Carbon; Carboxymethylcellulose Sodium; Escherichia coli; Nitrogen; Quantum Dots | 2023 |
Curative anti-typhoid effect of Detarium microcarpum Guill. & Perr. (Leguminosae) hydroethanolic extract root bark based-on in vivo and molecular docking analyses.
Detarium microcarpum is used to treat typhoid fever, a major public health problem, by indigenous population in Africa. Though its preventive activities have been documented, the curative effect is still to be confirmed.. This study aimed at evaluating the curative effects of the hydroethanolic extract of Detarium microcarpum root bark on Salmonella typhimurium-induced typhoid in rat and exploring the in-silico inhibition of some bacterial key enzymes.. In vitro antioxydant, in vivo antisalmonella of the extract and in silico molecular docking assay on the isolated compounds were carried out to explore the anti-salmonella effects of Detarium microcarpum.. The in vitro antioxidant properties of the extract were evaluated using DPPH, ABTS and FRAP tests. The anti-salmonella activity of the extract was assessed through feacal sample from Salmonella typhimurium-infected rat cultured in Salmonella-Shigella agar (SS agar) medium. The affinity of isolated compounds (Rhinocerotinoic acid and Microcarposide) from the extract were performed on four key enzymes (Adenylosuccinate lyase, Acetyl coenzyme A synthetase, Thymidine phosphorylase and LuxS-Quorum sensor) using molecular docking simulation to elucidate the molecular level inhibition mechanism.. Crude extract of D. microcarpum root bark showed variable activities on DPPH (RSa50: 6.09 ± 1.04 μg/mL), ABTS (RSa50: 24.46 ± 0.27), and FRAP (RSa50: 23.30 ± 0.23). The extract at all the doses exhibited significant healing effect of infected rats, with the complete clearance. The extract restored hematological, biochemical and histological parameters closed to the normal control. The molecular docking results indicates that rhinocerotinoic acid and microcarposide present more affinity to the LuxS-Quorum sensor and Acetyl coenzyme A synthetase protein as compared to the others.. These results demonstrate potent anti-typhoid activities of the hydroethanolic of Detarium microcarpum root bark extract through antioxidant properties and high inhibitory affinity of its compounds on some bacterial key enzymes that justify its use as traditional medicine to typhoid fever. Topics: Acetate-CoA Ligase; Agar; Animals; Antioxidants; Bacteria; Fabaceae; Molecular Docking Simulation; Plant Bark; Plant Extracts; Rats; Typhoid Fever | 2023 |
Fabrication of Carboxymethyl Cellulose/Agar-Based Functional Films Hybridized with Alizarin and Grapefruit Seed Extract.
Carboxymethyl cellulose/agar-based functional halochromic films were fabricated by adding alizarin and grapefruit seed extract (GSE). The fillers were evenly dispersed in the polymer matrix to form compatible composite films. The addition of alizarin has improved the film's mechanical strength (20%) and water resistance (40%) with potent antioxidant and excellent color indicating properties. In contrast, GSE has imparted strong antibacterial and antioxidant activities to the film. Also, the addition of alizarin and GSE slightly improved the water vapor barrier properties but did not affect the thermal stability of the film. The composite film also exhibited UV blocking properties with adequate transparency. The composite film showed an excellent pH-dependent color change with color reversibility and color stability and a volatile gas detection function. The film also showed potent antimicrobial activity against foodborne pathogenic bacteria, Topics: Agar; Anthraquinones; Anti-Bacterial Agents; Antioxidants; Benzothiazoles; Biocompatible Materials; Biphenyl Compounds; Cellulose; Citrus paradisi; Escherichia coli; Listeria monocytogenes; Materials Testing; Microbial Sensitivity Tests; Molecular Structure; Particle Size; Picrates; Plant Extracts; Sulfonic Acids | 2021 |