ag-490 has been researched along with diphenyleneiodonium* in 1 studies
1 other study(ies) available for ag-490 and diphenyleneiodonium
Article | Year |
---|---|
Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor.
Although both the renin angiotensin system (RAS) and the paired homeobox 2 gene (Pax-2) seem critically important in renal organogenesis, whether and how they might interact has not been addressed. The present study asked whether a link between the RAS and Pax-2 exists in fetal renal cells, speculating that such an interaction, if present, might influence renal development. Embryonic kidney explants and embryonic renal cells (mouse late embryonic mesenchymal epithelial cells [MK4] and mouse early embryonic mesenchymal fibroblasts [MK3]) were used. Pax-2 protein and Pax-2 mRNA were detected by immunofluorescence, Western blot, reverse transcription-PCR, and real-time PCR. Angiotensin II (AngII) upregulated Pax-2 protein and Pax-2 mRNA expression via the AngII type 2 (AT(2)) receptor in MK4 but not in MK3 cells. The stimulatory effect of AngII on Pax-2 gene expression could be blocked by PD123319 (AT(2) inhibitor), AG 490 (a specific Janus kinase 2 inhibitor), and genistein (a tyrosine kinase inhibitor) but not by losartan (AT(1) inhibitor), SB203580 (specific p38 mitogen-activated protein kinase inhibitor), PD98059 (specific MEK inhibitor), SP600125 (JNK inhibitor), and diphenyleneiodonium chloride (an NADPH oxidase inhibitor). Moreover, embryonic kidney explants in culture confirmed that AngII upregulates Pax-2 gene expression via the AT(2) receptor. These studies demonstrate that the stimulatory effect of AngII on Pax-2 gene expression is mediated, at least in part, via the Janus kinase 2/signal transducers and activators of transcription signaling transduction pathway, suggesting that RAS and Pax-2 interactions may be important in renal development. Topics: Angiotensin II; Animals; Anthracenes; Blotting, Western; Cells, Cultured; DNA-Binding Proteins; Dose-Response Relationship, Drug; Enzyme Inhibitors; Fibroblasts; Flavonoids; Genistein; Imidazoles; Kidney; Losartan; Mice; Microscopy, Fluorescence; Onium Compounds; PAX2 Transcription Factor; Phosphorylation; Plasmids; Pyridines; Receptors, Angiotensin; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Time Factors; Transcription Factors; Tyrphostins; Up-Regulation | 2004 |