afimoxifene and quinone-methide

afimoxifene has been researched along with quinone-methide* in 4 studies

Other Studies

4 other study(ies) available for afimoxifene and quinone-methide

ArticleYear
Bioactivation of the cancer chemopreventive agent tamoxifen to quinone methides by cytochrome P4502B6 and identification of the modified residue on the apoprotein.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    The nonsteroidal antiestrogen tamoxifen was introduced as a treatment for breast cancer 3 decades ago. It has also been approved as a chemopreventive agent and is prescribed to women at high risk for this disease. However, several studies have shown that use of tamoxifen leads to increased risk of endometrial cancer in humans. One potential pathway of tamoxifen toxicity could involve metabolism via hydroxylation to give 4-hydroxytamoxifen (4OHtam), which may be further oxidized to form a quinone methide. CYP2B6 is a highly polymorphic drug-metabolizing enzyme, and it metabolizes a number of clinically important drugs. Earlier studies from our laboratory have shown that tamoxifen is a mechanism-based inactivator of CYP2B6. The aim of the current study was to investigate the possible formation of reactive intermediates through detection of protein covalent binding and glutathione ethyl ester adduct (GSHEE) formation. The incubation of tamoxifen with 2B6 gave rise to an adduct of 4OHtam with glutathione, which was characterized as the 4OHtam quinone methide + GSHEE with an m/z value of 719, and the structure was characterized by liquid chromatography-tandem mass spectrometry. The metabolic activation of tamoxifen in the CYP2B6 reconstituted system also resulted in the formation of an adduct to the P4502B6 apoprotein, which was identified using liquid chromatography mass spectrometry. The site responsible for the inactivation of CYP2B6 was determined by proteolytic digestion and identification of the labeled peptide. This revealed a tryptic peptide ¹⁸⁸FHYQDQE¹⁹⁴ with the site of adduct formation localized to Gln193 as the site modified by the reactive metabolite formed during tamoxifen metabolism.

    Topics: Anticarcinogenic Agents; Antineoplastic Agents, Hormonal; Apoproteins; Aryl Hydrocarbon Hydroxylases; Biotransformation; Cytochrome P-450 CYP2B6; Glutathione; Humans; Hydroxylation; Indolequinones; Microsomes, Liver; Oxidoreductases, N-Demethylating; Tamoxifen

2012
Synthesis and reactivity of potential toxic metabolites of tamoxifen analogues: droloxifene and toremifene o-quinones.
    Chemical research in toxicology, 2001, Volume: 14, Issue:12

    Tamoxifen remains the endocrine therapy of choice in the treatment of all stages of hormone-dependent breast cancer. However, tamoxifen has been shown to increase the risk of endometrial cancer which has stimulated research for new effective antiestrogens, such as droloxifene and toremifene. In this study, the potential for these compounds to cause cytotoxic effects was investigated. One potential cytotoxic mechanism could involve metabolism of droloxifene and toremifene to catechols, followed by oxidation to reactive o-quinones. Another cytotoxic pathway could involve the oxidation of 4-hydroxytoremifene to an electrophilic quinone methide. Comparison of the amounts of GSH conjugates formed from 4-hydroxytamoxifen, droloxifene, and 4-hydroxytoremifene suggested that 4-hydroxytoremifene is more effective at formation of a quinone methide. However, all three substrates formed similar amounts of o-quinones. Both the tamoxifen-o-quinone and toremifene-o-quinone reacted with deoxynucleosides to give corresponding adducts. However, the toremifene-o-quinone was shown to be considerably more reactive than the tamoxifen-o-quinone in terms of both kinetic data as well as the yield and type of deoxynucleoside adducts formed. Since thymidine formed the most abundant adducts with the toremifene-o-quinone, sufficient material was obtained for characterization by (1)H NMR, COSY-NMR, DEPT-NMR, and tandem mass spectrometry. Cytotoxicity studies with tamoxifen, droloxifene, 4-hydroxytamoxifen, 4-hydroxytoremifene, and their catechol metabolites were carried out in the human breast cancer cell lines S30 and MDA-MB-231. All of the metabolites tested showed cytotoxic effects that were similar to the parent antiestrogens which suggests that o-quinone formation from tamoxifen, droloxifene, and 4-hydroxytoremifene is unlikely to contribute to their cytotoxicity. However, the fact that the o-quinones formed adducts with deoxynucleosides in vitro implies that the o-quinone pathway might contribute to the genotoxicity of the antiestrogens in vivo.

    Topics: Animals; Antineoplastic Agents; Benzoquinones; Breast Neoplasms; Cell Survival; Deoxyribonucleosides; DNA Adducts; Female; Glutathione; Indolequinones; Indoles; Microsomes, Liver; Quinones; Rats; Rats, Sprague-Dawley; Spectrometry, Mass, Electrospray Ionization; Tamoxifen; Toremifene; Tumor Cells, Cultured

2001
4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides.
    Chemical research in toxicology, 2000, Volume: 13, Issue:1

    Tamoxifen is widely prescribed for the treatment of hormone-dependent breast cancer, and it has recently been approved by the Food and Drug Administration for the chemoprevention of this disease. However, long-term usage of tamoxifen has been linked to increased risk of developing endometrial cancer in women. One of the suggested pathways leading to the potential toxicity of tamoxifen involves its oxidative metabolism to 4-hydroxytamoxifen, which may be further oxidized to an electrophilic quinone methide. The resulting quinone methide has the potential to alkylate DNA and may initiate the carcinogenic process. To further probe the chemical reactivity and toxicity of such an electrophilic species, we have prepared the 4-hydroxytamoxifen quinone methide chemically and enzymatically, examined its reactivity under physiological conditions, and quantified its reactivity with GSH. Interestingly, this quinone methide is unusually stable; its half-life under physiological conditions is approximately 3 h, and its half-life in the presence of GSH is approximately 4 min. The reaction between 4-hydroxytamoxifen quinone methide and GSH appears to be a reversible process because the quinone methide GSH conjugates slowly decompose over time, regenerating the quinone methide as indicated by LC/MS/MS data. The tamoxifen GSH conjugates were detected in microsomal incubations with 4-hydroxytamoxifen; however, none were observed in breast cancer cell lines (MCF-7) perhaps because very little quinone methides is formed. Toremifene, which is a chlorinated analogue of tamoxifen, undergoes similar oxidative metabolism to give 4-hydroxytoremifene, which is further oxidized to the corresponding quinone methide. The toremifene quinone methide has a half-life of approximately 1 h under physiological conditions, and its rate of reaction in the presence of excess GSH is approximately 6 min. More detailed analyses have indicated that the 4-hydroxytoremifene quinone methide reacts with two molecules of GSH and loses chlorine to give the corresponding di-GSH conjugates. The reaction mechanism likely involves an episulfonium ion intermediate which may contribute to the potential cytotoxic effects of toremifene. Similar to what was observed with 4-hydroxytamoxifen, 4-hydroxytoremifene was metabolized to di-GSH conjugates in microsomal incubations at about 3 times the rate of 4-hydroxytamoxifen, although no conjugates were detected with MCF-7 cells. Finally, these data suggest that quinone

    Topics: Animals; Antineoplastic Agents, Hormonal; Breast Neoplasms; Cytochrome P-450 Enzyme System; Estrogen Receptor Modulators; Female; Glutathione; Humans; Hydroxylation; Indolequinones; Indoles; Mass Spectrometry; Oxidation-Reduction; Quinones; Rats; Rats, Sprague-Dawley; Tamoxifen; Toremifene; Tumor Cells, Cultured

2000
Identification of tamoxifen-DNA adducts formed by 4-hydroxytamoxifen quinone methide.
    Carcinogenesis, 1997, Volume: 18, Issue:10

    Tamoxifen is a liver carcinogen in rats and has been shown to increase the risk of endometrial cancer in women. Recent reports of DNA adducts in leucocyte and endometrial samples from women treated with tamoxifen indicate that it may be genotoxic to humans. One of the proposed pathways for the metabolic activation of tamoxifen involves oxidation to 4-hydroxytamoxifen, which may be further oxidized to an electrophilic quinone methide. In the present study we show that 4-hydroxytamoxifen quinone methide reacts with DNA to form covalent adducts. The major products, which result from 1,8-addition of the exocyclic nitrogen of deoxyguanosine to the conjugated system of 4-hydroxytamoxifen quinone methide, are characterized as (E)- and (Z)-alpha-(deoxyguanosin-N2-yl)-4-hydroxytamoxifen.

    Topics: Animals; Chromatography, High Pressure Liquid; DNA Adducts; Indolequinones; Indoles; Quinones; Salmon; Spectrometry, Mass, Fast Atom Bombardment; Tamoxifen

1997