adenosine monophosphate has been researched along with wortmannin in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Ichinari, K; Ito, S; Kakei, M; Miyamura, A; Nakazaki, M; Okamura, M; Oketani, N; Tei, C | 1 |
Balduini, C; Barberis, L; Hirsch, E; Lova, P; Paganini, S; Sinigaglia, F; Torti, M; Wymann, M | 1 |
Hardy, AR; Hill, DJ; Poole, AW | 1 |
3 other study(ies) available for adenosine monophosphate and wortmannin
Article | Year |
---|---|
Regulation of K(ATP) channels by P(2Y) purinoceptors coupled to PIP(2) metabolism in guinea pig ventricular cells.
Topics: Adenosine; Adenosine Diphosphate; Adenosine Monophosphate; Adenosine Triphosphate; Androstadienes; Animals; Anti-Arrhythmia Agents; Cytosol; Enzyme Inhibitors; Extracellular Space; Glyburide; Guinea Pigs; Heart Ventricles; Male; Membrane Potentials; Myocardium; Phosphatidylinositol 4,5-Diphosphate; Potassium Channels; Receptors, Purinergic P2; Signal Transduction; Type C Phospholipases; Wortmannin | 2002 |
A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B.
Topics: Adenosine Diphosphate; Adenosine Monophosphate; Adenylyl Cyclase Inhibitors; Adenylyl Cyclases; Adrenergic Agonists; Androstadienes; Animals; Antimetabolites; Apyrase; Blood Platelets; Chromones; Dideoxyadenosine; Enzyme Inhibitors; Epinephrine; GTP-Binding Protein alpha Subunits, Gi-Go; Humans; Mice; Mice, Knockout; Morpholines; Phosphatidylinositol 3-Kinases; Phosphatidylinositol Phosphates; Phosphoinositide-3 Kinase Inhibitors; Platelet Activation; Platelet Aggregation; Protein Binding; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; rap GTP-Binding Proteins; Receptors, Fc; Receptors, IgG; Second Messenger Systems; Wortmannin | 2003 |
Evidence that the purinergic receptor P2Y12 potentiates platelet shape change by a Rho kinase-dependent mechanism.
Topics: Actins; Adenosine Diphosphate; Adenosine Monophosphate; Adenylyl Cyclase Inhibitors; Adenylyl Cyclases; Androstadienes; Blood Platelets; Calcium; Cell Shape; Chelating Agents; Egtazic Acid; Enzyme Activation; Enzyme Inhibitors; Humans; Intracellular Signaling Peptides and Proteins; Membrane Proteins; Myosins; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Platelet Activation; Protein Serine-Threonine Kinases; Pseudopodia; Purinergic P2 Receptor Antagonists; Receptors, Purinergic P2; Receptors, Purinergic P2Y1; Receptors, Purinergic P2Y12; rho-Associated Kinases; Second Messenger Systems; Wortmannin | 2005 |