adenosine-kinase has been researched along with 8-(4-sulfophenyl)theophylline* in 3 studies
3 other study(ies) available for adenosine-kinase and 8-(4-sulfophenyl)theophylline
Article | Year |
---|---|
Cardioprotection with adenosine metabolism inhibitors in ischemic-reperfused mouse heart.
To characterize the 'anti-ischemic' effects of adenosine metabolism inhibition in ischemic-reperfused myocardium.. Perfused C57/B16 mouse hearts were subjected to 20 min ischemia 40 min reperfusion in the absence or presence of adenosine deaminase inhibition (50 microM erythro-2-(2-hydroxy-3-nonyl)adenine; EHNA) adenosine kinase inhibition (10 microM iodotubercidin; IODO), or 10 microM adenosine. Hearts overexpressing A(1) adenosine receptors (A(1)ARs) were also studied.. EHNA treatment reduced ischemic contracture and post-ischemic diastolic pressure (14+/-2 vs. 20+/-1 mmHg), increased recovery of developed pressure (66+/-3 vs. 53+/-2%) and reduced LDH efflux (8.9+/-1.6 vs. 18.0+/-1.7 I.U./g). IODO also improved functional recovery (to 60+/-2%) and reduced LDH efflux (5.3+/-1.7 I.U./g), as did treatment with 10 microM adenosine. Protection with EHNA was reversed by co-infusion of IODO or 50 microM 8-rho-sulfophenyltheophylline (adenosine receptor antagonist), but unaltered by 20 microM inosine+10 microm hypoxanthine. Similarly, effects of iodotubercidin were inhibited by EHNA and 8-rho-sulfophenyltheophylline. A(1)AR overexpression exerted similar effects to EHNA and EHNA or IODO alone enhanced recovery while EHNA+IODO reduced recovery in transgenic hearts. Functional recoveries and xanthine oxidase reactant levels were unrelated in the groups studied.. Adenosine deaminase or kinase inhibition protects from ischemia-reperfusion. Cardioprotection via these enzyme inhibitors requires a functioning purine salvage pathway and involves enhanced adenosine receptor activation. Reduced formation of inosine is unimportant in EHNA-mediated protection. Topics: Adenine; Adenosine; Adenosine Deaminase Inhibitors; Adenosine Kinase; Animals; Enzyme Inhibitors; Female; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Myocardial Contraction; Myocardial Reperfusion Injury; Myocardium; Perfusion; Purinergic P1 Receptor Antagonists; Receptors, Purinergic P1; Theophylline; Tubercidin | 2001 |
Adenosine-mediated inhibition of platelet aggregation by acadesine. A novel antithrombotic mechanism in vitro and in vivo.
Inhibition of platelet aggregation by acadesine was evaluated both in vitro and ex vivo in human whole blood using impedance aggregometry, as well as in vivo in a canine model of platelet-dependent cyclic coronary flow reductions. In vitro, incubation of acadesine in whole blood inhibited ADP-induced platelet aggregation by 50% at 240 +/- 60 microM. Inhibition of platelet aggregation was time dependent and was prevented by the adenosine kinase inhibitor, 5'-deoxy 5-iodotubercidin, which blocked conversion of acadesine to its 5'-monophosphate, ZMP, and by adenosine deaminase. Acadesine elevated platelet cAMP in whole blood, which was also prevented by adenosine deaminase. In contrast, acadesine had no effect on ADP-induced platelet aggregation or platelet cAMP levels in platelet-rich plasma, but inhibition of aggregation was restored when isolated erythrocytes were incubated with acadesine before reconstitution with platelet-rich plasma. Acadesine (100 mg/kg i.v.) administered to human subjects also inhibited platelet aggregation ex vivo in whole blood. In the canine Folts model of platelet thrombosis, acadesine (0.5 mg/kg per min, i.v.) abolished coronary flow reductions, and this activity was prevented by pretreatment with the adenosine receptor antagonist, 8-sulphophenyltheophylline. These results demonstrate that acadesine exhibits antiplatelet activity in vitro, ex vivo, and in vivo through an adenosine-dependent mechanism. Moreover, the in vitro studies indicate that inhibition of platelet aggregation requires the presence of erythrocytes and metabolism of acadesine to acadesine monophosphate (ZMP). Topics: Adenosine; Adenosine Deaminase; Adenosine Kinase; Aminoimidazole Carboxamide; Animals; Aspirin; Blood Physiological Phenomena; Coronary Thrombosis; Coronary Vessels; Dipyridamole; Disease Models, Animal; Dogs; Erythrocytes; Humans; Male; Plasma; Platelet Aggregation; Purinergic P1 Receptor Antagonists; Regional Blood Flow; Ribonucleosides; Theophylline; Tubercidin | 1994 |
Manipulation of endogenous adenosine in the rat prepiriform cortex modulates seizure susceptibility.
A1 adenosine receptors in the rat prepiriform cortex play an important role in the inhibition of bicuculline methiodide-induced convulsions. In the present study we evaluated manipulation of endogenous adenosine in this brain area as a strategy to effect seizure suppression. All compounds evaluated were unilaterally microinjected into the rat prepiriform cortex. Administration of exogenous adenosine afforded a dose-dependent protection (ED50 = 48.1 +/- 8.4 nmol) against bicuculline methiodide-induced seizures, and these anticonvulsant effects were significantly potentiated by treatment with an adenosine kinase inhibitor, 5'-amino-5'-deoxyadenosine; by the adenosine transport blockers, dilazep or nitrobenzylthioinosine 5'-monophosphate; and by an adenosine deaminase inhibitor, 2'-deoxycoformycin. When administered alone, 5'-amino-5'-deoxyadenosine, 5'-iodotubercidin and dilazep were found to be highly efficacious as anticonvulsants with respective ED50 values of 2.6 +/- 0.8, 4.0 +/- 2.7 and 5.6 +/- 1.5 nmol. In contrast, 2'-deoxycoformycin was both less potent and less efficacious. These results suggest that accumulation of endogenous adenosine may contribute to seizure suppression, and that adenosine kinase and adenosine transport may play a pivotal role in the regulation of extracellular levels of adenosine in the central nervous system. The adenosine antagonist, 8-(p-sulfophenyl)theophylline, increased markedly the severity of bicuculline methiodide-induced seizures. Moreover, reduction of extracellular adenosine formation by a focal injection of an ecto-5'-nucleotidase inhibitor, alpha, beta-methyleneadenosine diphosphate, produced generalized seizures (ED50 = 37.3 +/- 22.7 nmol). Together the proconvulsant effect of an adenosine receptor antagonist and the convulsant action of an ecto-5'-nucleotidase inhibitor further support the role of endogenous adenosine as a tonically active antiepileptogenic substance in the rat prepiriform cortex. Topics: Adenosine; Adenosine Deaminase Inhibitors; Adenosine Diphosphate; Adenosine Kinase; Animals; Bicuculline; Cerebral Cortex; Male; Pentostatin; Rats; Rats, Sprague-Dawley; Receptors, Purinergic; Seizures; Theophylline; Thioinosine | 1993 |