adenosine-kinase and 3-deazaadenosine

adenosine-kinase has been researched along with 3-deazaadenosine* in 2 studies

Other Studies

2 other study(ies) available for adenosine-kinase and 3-deazaadenosine

ArticleYear
Evaluation of 3-deaza-adenosine analogues as ligands for adenosine kinase and inhibitors of Mycobacterium tuberculosis growth.
    The Journal of antimicrobial chemotherapy, 2007, Volume: 59, Issue:1

    Analyse a series of halogenated 3-deaza-adenosine analogues for efficacy against Mycobacterium tuberculosis H37Ra and determine if adenosine (Ado) kinase plays a role in the mechanism of action of these compounds.. The MIC as determined by microdilution broth assay provided a measure of antitubercular efficacy. MIC values were measured in M. tuberculosis strains H37Ra, SRICK1 (an Ado kinase-deficient strain of M. tuberculosis derived from H37Ra) and SRICK1 complemented with adoK, the gene which codes for Ado kinase in M. tuberculosis, in order to determine if Ado kinase played a role in the mechanism of action of these compounds. Furthermore, each compound was analysed as both a substrate and inhibitor for purified Ado kinases from M. tuberculosis and human sources.. 2-Fluoro-3-deaza-adenosine, 3-fluoro-3-deaza-adenosine and 2,3-difluoro-3-deaza-adenosine exhibited antitubercular activity that was Ado kinase-dependent. Furthermore, these compounds were at least 10-fold better substrates for M. tuberculosis Ado kinase than the human homologue.. The Ado kinase-dependent antitubercular activity exhibited by several of the halogenated 3-deaza-adenosine analogues investigated in this study warrants further investigation of these compounds as antitubercular agents. Furthermore, substrate and inhibition studies provided insight into the Ado-binding domain of Ado kinase, indicating that steric hindrance may limit the size of exocyclic modifications at the 3-position of Ado.

    Topics: Adenosine Kinase; Antitubercular Agents; Humans; Ligands; Mycobacterium tuberculosis; Structure-Activity Relationship; Substrate Specificity; Tubercidin

2007
Alterations in nucleotide pools induced by 3-deazaadenosine and related compounds. Role of adenylate deaminase.
    Biochemical pharmacology, 1988, Apr-01, Volume: 37, Issue:7

    3-Deazaadenine, 3-deazaadenosine, and the carbocyclic analog of 3-deazaadenosine produced similar effects on nucleotide pools of L1210 cells in culture: each caused an increase in IMP and a decrease in adenine nucleotides and had no effect on nucleotides of uracil and cytosine. Concentrations of 50-100 microM were required to produce these effects. Although 3-deazaadenosine and carbocyclic 3-deazaadenosine are known to be potent inhibitors of adenosylhomocysteine hydrolase, the effects on nucleotide pools apparently are not mediated via this inhibition because they are also produced by the base, 3-deazaadenine, and because the concentrations required are higher than those required to inhibit the hydrolase. Cells grown in the presence of 3-deazaadenine or 3-deazaadenosine contained phosphates of 3-deazaadenosine (the mono- and triphosphates were isolated); from cells grown in the presence of the carbocyclic analog of 3-deazaadenosine, the monophosphate was isolated, but evidence for the presence of the triphosphate was not obtained. A cell-free supernatant fraction from L1210 cells supplemented with ATP catalyzed the formation of monophosphates from 3-deazaadenosine or carbocyclic 3-deazaadenosine, and a cell-free supernatant fraction supplemented with 5-phosphoribosyl 1-pyrophosphate (PRPP) catalyzed the formation of 3-deaza-AMP from 3-deazaadenine. Adenosine kinase apparently was not solely responsible for the phosphorylation of the nucleosides because a cell line that lacked this enzyme converted 3-deazaadenosine to phosphates. No evidence was obtained that the effects on nucleotide pools resulted from a block of the IMP-AMP conversion, but the results could be rationalized as a consequence of increased AMP deaminase activity. This explanation is supported by two observations: (a) coformycin, an inhibitor of AMP deaminase, prevented the effects on nucleotide pools, and (b) 3-deazaadenine decreased the conversion of carbocyclic adenosine to carbocyclic ATP and increased its conversion to carbocyclic GTP. The latter conversion requires the action of AMP deaminase and the observed effects can be rationalized by a nucleoside analog-mediated increase in AMP deaminase activity. Because these effects on nucleotide pools are produced only by concentrations higher than those required to inhibit adenosylhomocysteine hydrolase, they may not contribute significantly to the biological effects of 3-deazaadenosine or carbocyclic 3-deazaadenosine.(ABSTRACT TRUNCATED AT

    Topics: Adenine; Adenosine Kinase; Alanine; Aminoglycosides; AMP Deaminase; Animals; Anti-Bacterial Agents; Cell Survival; Coformycin; Hypoxanthine; Hypoxanthines; Mice; Nucleotide Deaminases; Nucleotides; Time Factors; Tubercidin

1988