adenosine-5--o-(3-thiotriphosphate) has been researched along with leupeptin* in 2 studies
2 other study(ies) available for adenosine-5--o-(3-thiotriphosphate) and leupeptin
Article | Year |
---|---|
ATP is required in platelet serotonin exocytosis for protein phosphorylation and priming of secretory vesicles docked on the plasma membrane.
Calcium-evoked secretion generally requires the presence of millimolar concentrations of Mg-ATP. We investigated the role of Mg-ATP in the secretion of serotonin from electropermeabilized bovine platelets. The secretion of serotonin was lost within 5 minutes when the Mg-ATP concentration was diluted to less than 0.1 mM, but was maintained when ATP-gamma S (adenosine 5'-O-3-thiotriphosphate) was used instead of ATP. Okadaic acid, a potent inhibitor of protein phosphatase, could also maintain the exocytotic activity even when ATP was diluted. Decrease in the secretory activity was paralleled by a decrease in phosphorylation level of four proteins after dilution of ATP, but the activity was maintained when the thiophosphorylation level of these proteins was maintained. Two of these proteins were digested by a protease, calpain, which has been shown to lead to a loss in the exocytotic activity. Electron microscopic studies showed that calcium did not induce the formation of distinct bridge-like structures between the granule membrane and the plasma membrane in Mg-ATP-diluted cells, previously shown as the structure transiently formed prior to fusion of the two membranes. Anchorage of the secretory dense granules to the plasma membrane and the presence of the amorphous structures between the granules and the plasma membrane were unchanged by dilution of ATP. These results indicate that ATP is not required for the anchorage itself, but is required to prime anchored granules for calcium-triggered secretion. Maintenance of the phosphorylated state of proteins by ATP enables the calcium trigger to form the bridge-like structures preceding membrane fusion events. Topics: Adenosine Triphosphate; Animals; Blood Platelets; Calcium; Calpain; Cattle; Cell Membrane; Culture Media; Cytoplasmic Granules; Exocytosis; Leupeptins; Magnesium; Okadaic Acid; Phosphoprotein Phosphatases; Phosphorylation; Proteins; Serotonin | 1996 |
Enzymatic regulation of calcium current in dialyzed and intact molluscan neurons.
Isolated neurons of Helix aspersa were dialyzed and voltage clamped under conditions that isolate the Ca current. The rapid time-dependent run-down, or washout, of Ca current could be slowed by addition of 1 mM EGTA to the dialysis solution. A more effective means of slowing washout was the use of agents that promote protein phosphorylation, such as cAMP, Mg-ATP and the catalytic subunit (CS) of cAMP-dependent protein kinase, along with leupeptin, a tripeptide inhibitor of proteases. In the presence of these agents, no internal EGTA was required to prevent Ca current washout. Thus, during dialysis with 100 microM leupeptin, 7 mM Mg-ATP and 20 micrograms/ml CS, the Ca current remained stable for up to several hours. The rate of Ca-dependent inactivation of the current that occurs during a depolarizing step showed only a small decline during prolonged dialysis. Under these conditions, introduction of 10 microM calmodulin plus 40 micrograms/ml calcineurin, a Ca-calmodulin-dependent phosphatase, caused a significant increase in the rate of Ca current inactivation during a depolarizing step. This increase in rate of inactivation, as well as the original inactivation, was eliminated by introduction of EGTA or replacement of external Ca with Ba, results that are consistent with the ion dependency for activation of calcineurin. When internal ATP was replaced with ATP-gamma-S, a hydrolysis-resistant analogue, the rate of Ca current inactivation slowed, providing further evidence that inactivation involves a dephosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 8-Bromo Cyclic Adenosine Monophosphate; Adenosine Triphosphate; Animals; Calcium; Calmodulin-Binding Proteins; Egtazic Acid; Helix, Snails; In Vitro Techniques; Ion Channels; Leupeptins; Neurons; Phosphoprotein Phosphatases; Protein Kinases | 1986 |