adenosine-5--(n-ethylcarboxamide) has been researched along with 9-(tetrahydro-2-furyl)-adenine* in 4 studies
4 other study(ies) available for adenosine-5--(n-ethylcarboxamide) and 9-(tetrahydro-2-furyl)-adenine
Article | Year |
---|---|
Role of cyclic nucleotides in vasodilations of the rat thoracic aorta induced by adenosine analogues.
Although adenosine analogues such as 5'-N-ethylcarboxamidoadenosine (NECA) relax the rat thoracic aorta in a partially endothelium-dependent manner via adenosine A(2A) receptors, others such as N(6)-R-phenylisopropyladenosine (R-PIA) act via an endothelium-independent, antagonist-insensitive mechanism. The role of cyclic nucleotides in these relaxations was investigated in isolated aortic rings using inhibitors of adenylate and guanylate cyclases as well as subtype-selective phosphodiesterase inhibitors. The adenylate cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ 22536; 100 microM) significantly inhibited responses to NECA, but not responses to R-PIA. The type IV (cyclic AMP-selective) phosphodiesterase inhibitor 4-[(3-butoxy-4-methoxyphenyl)methyl]-2-imidazolidinone (RO 20-1724; 30 microM) significantly enhanced responses to NECA and to a lesser extent those to R-PIA. The guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3a]quinoxalin-1-one (ODQ; 100 microM) significantly inhibited responses to NECA and acetylcholine but not responses to R-PIA. The selective phosphodiesterase V (cyclic GMP-selective) inhibitors, zaprinast (10 microM) and 4-[[3',4'-(methylenedioxy)benzyl]amino]-6-methoxyquinazoline (MMQ; 1 microM), had no significant effect on responses to either NECA or R-PIA, but enhanced responses to acetylcholine. These results are consistent with the effects of NECA being via activation of endothelial receptors to release NO which stimulates guanylate cyclase, as well as smooth muscle receptors coupled to stimulation of adenylate cyclase. The lack of effect of zaprinast and MMQ on responses to NECA are likely to be due to simultaneous activation of both adenylate and guanylate cyclases in the smooth muscle, as cyclic AMP reduces the sensitivity of phosphodiesterase V to inhibitors. These results also suggest that the effects of R-PIA are via neither of these mechanisms. Topics: 4-(3-Butoxy-4-methoxybenzyl)-2-imidazolidinone; Acetylcholine; Adenine; Adenosine; Adenosine-5'-(N-ethylcarboxamide); Adenylyl Cyclase Inhibitors; Animals; Aorta, Thoracic; Dose-Response Relationship, Drug; Enzyme Inhibitors; In Vitro Techniques; Male; Nitroprusside; Nucleotides, Cyclic; Oxadiazoles; Purinones; Quinazolines; Quinoxalines; Rats; Rats, Wistar; Vasodilation; Vasodilator Agents | 2001 |
Neurite outgrowth in PC12 cells is enhanced by guanosine through both cAMP-dependent and -independent mechanisms.
Extracellular guanosine, guanosine triphosphate (GTP), and 5'-N'-ethylcarboxamidoadenosine (NECA), each significantly enhanced the proportion of nerve growth factor (NGF)-treated rat pheochromocytoma (PC12) cells which had neurites, greater than that in cultures exposed to NGF alone. Guanosine and NECA, but not GTP, increased intracellular cAMP concentrations. An adenylate cyclase inhibitor, SQ22536, completely blocked the cAMP increase induced by both guanosine and 0.1 microM NECA. However, SQ22536 only partially blocked guanosine enhanced neurite outgrowth, although it completely blocked the neuritogenic effect of NECA. Therefore guanosine-enhanced neurite outgrowth through both cAMP-dependent and -independent mechanisms, while the effect of GTP was cAMP-independent. Topics: Adenine; Adenosine; Adenosine-5'-(N-ethylcarboxamide); Adenylyl Cyclase Inhibitors; Animals; Antineoplastic Agents; Colforsin; Cyclic AMP; Enzyme Inhibitors; Guanosine; Guanosine Triphosphate; Nerve Growth Factors; Neurites; PC12 Cells; Rats | 1996 |
Characterization of the PGE receptor subtype mediating inhibition of superoxide production in human neutrophils.
1. The aims of this study were to characterize the EP receptor subtype mediating the inhibition of superoxide anion generation by formyl methionyl leucine phenylalanine (FMLP)-stimulated human neutrophils, and to test the hypothesis that adenosine 3':5'-cyclic monophosphate (cyclic AMP) is the second messenger mediating the inhibition of the neutrophil by prostaglandin (PG)E2. 2. PGE2 (0.001-10 microM) inhibited FMLP (100 nM)-induced O2-generation from human peripheral blood neutrophils in a concentration-dependent manner, with an EC50 of 0.15 +/- 0.03 microM, and a maximum effect ranging from 36-84% (mean inhibition of 68.7 +/- 2.5%, n = 32). 3. The EP2-receptor agonists, misoprostol, 11-deoxy PGE1, AH13205 and butaprost, all at 10 microM, inhibited O2- generation, causing 95.5 +/- 2.9%, 56.8 +/- 5.2%, 37.1 +/- 6.6% and 18.9 +/- 4.4% inhibition respectively, the latter two being much less effective than PGE2. Similarly, the EP1-receptor agonist, 17-phenyl PGE2 (10 microM), and the EP3/EP1-receptor agonist, sulprostone (10 microM), also inhibited O2- generation, causing 32.2 +/- 7.0% and 15.3 +/- 3.4% inhibition respectively. 4. The non-selective phosphodiesterase inhibitor, isobutyl methylxanthine (IBMX, 0.25 mM) inhibited the FMLP response by 54.5 +/- 5.0%. In addition, IBMX shifted concentration-effect curves for PGE2, misoprostol, 11-deoxy PGE1, butaprost, and AH 13205 to the left, to give EC50s of 0.04 +/- 0.03 (n = 13), 0.07 +/- 0.03 (n = 4), 0.08 +/- 0.03 (n = 4), 0.33 +/- 0.13 (n = 4) and 0.41 +/- 0.2 microM (n = 3) respectively, allowing equieffective concentration-ratios (EECs, PGE2 = 1) of 11.5, 5.3, 50.7 and 12.7 to be calculated. This agrees well with the relative potencies of these agonists at EP2 receptors.5. By contrast, even in the presence of IBMX (0.25 mM), sulprostone and 17-phenyl PGE2 were only effective at the highest concentration (10 microM), and gave EECs of > 700 and 486 respectively, suggesting that EP1 or EP3 receptors are not involved.6. The selective type IV phosphodiesterase inhibitor, rolipram at 2 and 10 nM did not inhibit the FMLP response, but at the higher concentration of 50 nM, it decreased the FMLP response by 46.6 +/-7.3%.However, rolipram shifted concentration-effect curves for PGE2 to the left to give EC50s of 0.06 +/-0.022,0.015 +/- 0.0, 0.012 +/- 0.006 microM at 2, 10 and 50 nM respectively, compared to the control EC50 of0.27+/- 0.09 microM for PGE2.7. The EP4/TP receptor blocking drug, AH 23848B (10 microM, 1 Topics: Adenine; Adenosine; Adenosine-5'-(N-ethylcarboxamide); Alprostadil; Cyclic AMP; Dinoprostone; Dose-Response Relationship, Drug; Humans; Misoprostol; N-Formylmethionine Leucyl-Phenylalanine; Neutrophils; Receptors, Prostaglandin E; Superoxides | 1995 |
Characterization of adenosine receptors in bone. Studies on the effect of adenosine analogues on cyclic AMP formation and bone resorption in cultured mouse calvaria.
The effect of different adenosine analogues on cyclic AMP (cAMP) formation and bone resorption in cultured mouse calvarial bones was investigated. 5'-N-ethylcarboxamidoadenosine (NECA), R-N6-phenylisopropyl-adenosine (PIA), N6-cyclohexyl-adenosine (CHA) and 2-chloroadenosine all stimulated cyclic AMP formation with a threshold close to 1 mumol l-1); NECA was the most potent agonist. Theophylline (10, 100 mumol l-1) inhibited the cAMP accumulation induced by NECA and 2-chloroadenosine (30 and 300 mumol l-1), dose dependently. There was no inhibition of cAMP formation by PIA and CHA in forskolin-treated bone tissue. SQ 22, 536 and 2',5'-dideoxyadenosine (100 mumol l-1) both inhibited rolipram-stimulated cAMP formation. Cyclic AMP accumulation in isolated osteoblast-like cells from neonatal mouse calvarial bones was stimulated by NECA (10 and 100 mumol l-1) and 2-chloroadenosine (100 mumol l-1). 2-chloroadenosine (10 and 30 mumol l-1), but not NECA, PIA nor CHA, caused a dose-dependent stimulation of 45Ca release in both 48- and 120-h culture. The effect of 2-chloroadenosine on 45Ca release could not be antagonized by theophylline. Neither NECA, PIA, CHA nor 2-chloroadenosine could affect PTH-stimulated 45Ca release in short term cultures (6, 24 h). By contrast, stimulation of cAMP formation by forskolin or dibutyryl cAMP caused a rapid (6 h) inhibition of PTH-stimulated bone resorption. The results demonstrate functional A2 and P-site receptors in mouse calvaria and osteoblast-like cells, but no A1-receptor was detected. These adenosine receptors regulate cAMP, but are not intimately linked to bone resorption. The calcium mobilization induced by 2-chloroadenosine appears to be unrelated to adenosine receptors. Topics: 2-Chloroadenosine; Adenine; Adenosine; Adenosine-5'-(N-ethylcarboxamide); Animals; Bone and Bones; Bone Resorption; Cells, Cultured; Colforsin; Cyclic AMP; Mice; Phenylisopropyladenosine; Pyrrolidinones; Receptors, Cyclic AMP; Rolipram; Theophylline | 1987 |