acyclovir has been researched along with fumaric-acid* in 3 studies
3 other study(ies) available for acyclovir and fumaric-acid
Article | Year |
---|---|
Solid-state cocrystal formation between acyclovir and fumaric acid: Terahertz and Raman vibrational spectroscopic studies.
The vibrational spectra of solid-state acyclovir, fumaric acid and their cocrystal have been investigated by using terahertz time-domain spectroscopy (THz-TDS) and Raman spectroscopy at room temperature. In experimental THz spectra, the cocrystal has absorption peaks in 0.65, 0.94 and 1.10THz respectively, while the raw materials are absolutely different in this region. Raman spectra also show similar results about differences between the cocrystal and raw materials. Density functional theory (DFT) was performed to simulate vibrational modes of different theoretical forms between acyclovir and fumaric acid. The calculation of theoretical THz spectra shows that O8C7N1H27 and the carboxyl group COOH establish a dimer theoretical cocrystal form by the hydrogen bonding effect, which makes contributions to the formation of absorption peaks in 0.70, 1.01 and 1.34THz, and agrees well with experimental observations. The theoretical Raman result also indicates that this dimer form matches with experimental results. The characteristic bands of the cocrystal between acyclovir and fumaric acid are also assigned based on the simulation results from the DFT calculation. Topics: Acyclovir; Crystallization; Fumarates; Spectrum Analysis, Raman; Terahertz Spectroscopy; Vibration | 2017 |
Cocrystals of acyclovir with promising physicochemical properties.
Cocrystal forming ability of antiviral drug acyclovir (ACV) with different coformers was studied. Three cocrystals containing ACV with fumaric acid, malonic acid, and DL-tartaric acid were isolated. Methods of cocrystallization included grinding with dropwise solvent addition and solvent evaporation. The cocrystals were characterized by powder X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The crystal structure of the cocrystal with fumaric acid as conformer was determined by single crystal X-ray diffraction. Formation of supramolecular synthon was observed in the cocrystal. Stability with respect to relative humidity for the three cocrystals was evaluated. The aqueous solubility of the ACV-cocrystal materials was significantly improved with a maximum of malonic acid cocrystal, which was about six times more soluble at 35°C compared with that of parent ACV. The dissolution profile indicates that at any particular dissolution time, the concentration of cocrystals in the solution was higher than that of the parent ACV, and malonic acid cocrystals had a maximum release of about twice than the hydrated ACV. Topics: Acyclovir; Antiviral Agents; Calorimetry, Differential Scanning; Chemical Phenomena; Crystallization; Crystallography, X-Ray; Dicarboxylic Acids; Drug Compounding; Drug Stability; Fumarates; Hydrogen Bonding; Kinetics; Malonates; Models, Molecular; Molecular Conformation; Pharmaceutic Aids; Powder Diffraction; Solubility; Tartrates; Thermogravimetry | 2015 |
Preparation and physicochemical characterization of acyclovir cocrystals with improved dissolution properties.
Acyclovir is a well-known antiviral agent. It can be administered in very high doses (from 200 to 1000 mg even three-four times daily). It has absorption problems mainly due to its poor solubility in water (about 0.2 g/100 mL at 25°C) and its oral bioavailability is approximately 15%-20% with a half-life of about 3 h. To improve acyclovir solubility and/or its dissolution properties, two cocrystals of this drug were successfully produced with glutaric acid (AGA1:1) and fumaric acid (AFA1:1) as conformers, using a cogrinding method. Their effective formation was investigated by a broad range of techniques: thermal analysis, Fourier transform infrared spectroscopy, X-ray powder diffraction, solid state nuclear magnetic resonance, and scanning electron microscopy coupled with energy dispersive X-ray spectrometry. The water solubility of the AGA1:1 cocrystal was not improved in comparison to acyclovir, while AFA1:1 showed a slight increased solubility at equilibrium. The main difference was detected in terms of intrinsic dissolution rates (IDR). The IDR of the new phases were much faster compared with acyclovir, particularly at neutral pH. AFA1:1 showed the most rapid dissolution behavior in water; within 10 min, the drug was released completely, while just 60% of acyclovir was dissolved in 1 h. Topics: Acyclovir; Antiviral Agents; Calorimetry, Differential Scanning; Fumarates; Glutarates; Magnetic Resonance Spectroscopy; Powder Diffraction; Solubility; X-Ray Diffraction | 2013 |