acyclovir and cyclam

acyclovir has been researched along with cyclam* in 1 studies

Other Studies

1 other study(ies) available for acyclovir and cyclam

ArticleYear
Lights and shadows in the challenge of binding acyclovir, a synthetic purine-like nucleoside with antiviral activity, at an apical-distal coordination site in copper(II)-polyamine chelates.
    Journal of inorganic biochemistry, 2015, Volume: 148

    Several nucleic acid components and their metal complexes are known to be involved in crucial metabolic steps. Therefore the study of metal-nucleic acid interactions becomes essential to understand these biological processes. In this work, the synthetic purine-like nucleoside acyclovir (acv) has been used as a model of guanosine recognition with copper(II)-polyamine chelates. The chemical stability of the N9-acyclic arm in acv offers the possibility to use this antiviral drug to deepen the knowledge of metal-nucleoside interactions. Cu(II) chelates with cyclam, cyclen and trien were used as suitable receptors. All these copper(II) tetraamine chelates have in common the potential ability to yield a Cu-N7(apical) bond assisted by an appropriate (amine)N-H⋯O6(acv) intra-molecular interligand interaction. A series of synthesis afforded the following compounds: [Cu(cyclam)(ClO4)2] (1), {[Cu(cyclam)(μ2-NO3)](NO3)}n (2), {[Cu(cyclam)(μ2-SO4)]·MeOH}n (3), {[Cu(cyclam)(μ2-SO4)]·5H2O}n (4), [Cu(cyclen)(H2O)]SO4·2H2O (5), [Cu(cyclen)(H2O)]SO4·3H2O (6), [Cu(trien)(acv)](NO3)2·acv (7) and [Cu(trien)(acv)]SO4·0.71H2O (8). All these compounds have been characterized by X-ray crystallography and FT-IR spectroscopy. Our results reveal that the macrochelates Cu(cyclen)(2+) and Cu(cyclam)(2+) are unable to bind acv at an apical site. In contrast, the Cu(trien)(2+) complex has proved to be an efficient receptor for acv in compounds (7) and (8). In the ternary complex [Cu(trien)(acv)](2+), the metal binding pattern of acv consists of an apical Cu-N7 bond assisted by an intra-molecular (primary amino)N-H⋯O6(acv) interligand interaction. Structural comparisons reveal that this unprecedented apical role of acv is due to the acyclic nature of trien together with the ability of the Cu(trien)(2+) chelate to generate five-coordinated (type 4+1) copper(II) complexes.

    Topics: Acyclovir; Antiviral Agents; Chelating Agents; Coordination Complexes; Copper; Crystallography, X-Ray; Cyclams; Heterocyclic Compounds; Models, Molecular; Molecular Conformation; Molecular Structure; Nucleosides; Polyamines; Purines; Spectroscopy, Fourier Transform Infrared; Thermogravimetry; Trientine

2015