Page last updated: 2024-08-17

acrylamide and 1,2-dioleoyl-sn-glycero-3-phosphoglycerol

acrylamide has been researched along with 1,2-dioleoyl-sn-glycero-3-phosphoglycerol in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (50.00)18.2507
2000's2 (50.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Nagaraj, R; Sitaram, N1
Breukink, E; de Kruijff, B; Demel, RA; Kuipers, OP; Siezen, RJ; van Dalen, A; van Kraaij, C1
Esbjörner, EK; Goksör, M; Lincoln, P; Nordén, B; Persson, D; Thorén, PE1
Fedorov, A; Hemminga, MA; Hesselink, RW; Prieto, M1

Other Studies

4 other study(ies) available for acrylamide and 1,2-dioleoyl-sn-glycero-3-phosphoglycerol

ArticleYear
Interaction of the 47-residue antibacterial peptide seminalplasmin and its 13-residue fragment which has antibacterial and hemolytic activities with model membranes.
    Biochemistry, 1993, Mar-30, Volume: 32, Issue:12

    Topics: Acrylamide; Acrylamides; Amino Acid Sequence; Animals; Cattle; Circular Dichroism; Fluoresceins; Iodides; Liposomes; Molecular Sequence Data; Nitrates; Peptide Fragments; Phosphatidylcholines; Phosphatidylglycerols; Phosphatidylserines; Proteins; Seminal Vesicle Secretory Proteins; Spectrometry, Fluorescence

1993
The orientation of nisin in membranes.
    Biochemistry, 1998, Jun-02, Volume: 37, Issue:22

    Topics: Acrylamide; Acrylamides; Amino Acid Sequence; Lipid Bilayers; Models, Molecular; Molecular Sequence Data; Mutagenesis, Site-Directed; Nisin; Phosphatidylcholines; Phosphatidylglycerols; Spectrometry, Fluorescence; Spin Labels; Tryptophan

1998
Membrane binding and translocation of cell-penetrating peptides.
    Biochemistry, 2004, Mar-30, Volume: 43, Issue:12

    Topics: Acrylamide; Amino Acid Sequence; Bromine; Carrier Proteins; Cell Membrane Permeability; Cell-Penetrating Peptides; Coumarins; Fluorescence Resonance Energy Transfer; Gene Products, tat; Lipid Bilayers; Lysophospholipids; Membrane Microdomains; Molecular Sequence Data; Oligonucleotides; Peptides; Phosphatidylcholines; Phosphatidylglycerols; Protein Binding; Protein Conformation; Protein Transport; Spectrometry, Fluorescence; Tryptophan

2004
Membrane-bound peptides from V-ATPase subunit a do not interact with an indole-type inhibitor.
    Journal of peptide science : an official publication of the European Peptide Society, 2008, Volume: 14, Issue:4

    Topics: Acrylamide; Amino Acid Sequence; Amino Acids; Arginine; Fluorescence Resonance Energy Transfer; Indoles; Lipid Bilayers; Lipids; Membrane Proteins; Molecular Sequence Data; Peptides; Phosphatidylcholines; Phosphatidylglycerols; Piperidines; Protein Binding; Protein Conformation; Protein Structure, Secondary; Protein Structure, Tertiary; Saccharomyces cerevisiae; Spectrometry, Fluorescence; Spectrophotometry; Tryptophan; Vacuolar Proton-Translocating ATPases

2008