acrolein has been researched along with paclitaxel in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 1 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M | 1 |
Kim, SY; Lee, HJ; Lee, YS; Nam, JW; Seo, EK | 1 |
2 other study(ies) available for acrolein and paclitaxel
Article | Year |
---|---|
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship | 2008 |
Coniferyl aldehyde reduces radiation damage through increased protein stability of heat shock transcriptional factor 1 by phosphorylation.
Topics: Acrolein; Animals; Antineoplastic Agents, Phytogenic; Bone Marrow Cells; Cell Line, Tumor; DNA-Binding Proteins; Female; Heat Shock Transcription Factors; HSP27 Heat-Shock Proteins; HSP70 Heat-Shock Proteins; Humans; In Situ Nick-End Labeling; Lung Neoplasms; MAP Kinase Signaling System; Mice; Mice, Inbred BALB C; Mice, Inbred ICR; Mice, Nude; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Paclitaxel; Phosphorylation; Radiation Injuries, Experimental; Radiation-Protective Agents; RNA, Messenger; Transcription Factors; Whole-Body Irradiation | 2015 |