aconitine and brevetoxin

aconitine has been researched along with brevetoxin* in 2 studies

Other Studies

2 other study(ies) available for aconitine and brevetoxin

ArticleYear
Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility.
    Journal of cellular physiology, 2003, Volume: 195, Issue:3

    Previous work suggested that functional voltage-gated Na(+) channels (VGSCs) are expressed specifically in strongly metastatic cells of rat and human prostate cancer (PCa), thereby raising the possibility that VGSC activity could be involved in cellular behavior(s) related to the metastatic cascade. In the present study, the possible role of VGSCs in the lateral motility of rat PCa cells was investigated in vitro by testing the effect of modulators that either block or enhance VGSC activity. Two rat PCa cell lines of markedly different metastatic ability were used in a comparative approach: the strongly metastatic MAT-LyLu and the weakly metastatic AT-2 cell line, only the former being known to express functional VGSCs. Using both electrophysiological recording and a motility assay, the effects of two VGSC blockers (tetrodotoxin and phenytoin) and four potential openers (veratridine, aconitine, ATX II, and brevetoxin) were monitored on (a) Na(+) channel activity and (b) cell motility over 48 h. Tetrodotoxin (at 1 microM) and phenytoin (at 50 microM) both decreased the motility index of the MAT-LyLu cell line by 47 and 11%, respectively. Veratridine (at 20 microM) and brevetoxin (at 10 nM) had no effect on the motility of either cell line, whilst aconitine (at 100 microM) and ATX II (at 25 pM) significantly increased the motility of the MAT-LyLu cell line by 15 and 9%, respectively. Importantly, at the concentrations used, none of these drugs had effects on the proliferation or viability of either cell line. The results, taken together, would suggest strongly that functional VGSC expression enhances cellular motility of PCa cells. The relevance of these findings to the metastatic process in PCa is discussed.

    Topics: Aconitine; Animals; Carcinoma; Cell Division; Cell Movement; Cnidarian Venoms; Cytoskeletal Proteins; Cytoskeleton; Gene Expression Regulation, Neoplastic; Ion Transport; Male; Marine Toxins; Neoplasm Metastasis; Oxocins; Patch-Clamp Techniques; Phenytoin; Prostatic Neoplasms; Rats; Sodium Channel Blockers; Sodium Channels; Tetrodotoxin; Tumor Cells, Cultured; Veratridine

2003
Relaxation of rabbit corpus cavernosum by selective activators of voltage-gated sodium channels: role of nitric oxide-cyclic guanosine monophosphate pathway.
    Urology, 2003, Volume: 62, Issue:3

    To investigate the capacity of voltage-gated Na(+) channel activators such as batrachotoxin, aconitine, veratridine, Ts1 (formerly Tityus gamma-toxin), and brevetoxin-3 to induce relaxation of rabbit isolated corpus cavernosum (RbCC) and the pharmacologic mechanisms underlying this phenomenon. The voltage-gated Na(+) channels of the corpus cavernosum are essential for erectile function. A number of biologic toxins exert their effects by modifying the properties of these channels.. Male New Zealand white rabbits were anesthetized with pentobarbital sodium. Strips of RbCC were transferred to 10-mL organ baths containing oxygenated and warmed Krebs solution. The RbCC strips were connected to force-displacement transducers, and changes in isometric force were recorded using a PowerLab 400 data acquisition system. Corporeal smooth muscle was precontracted submaximally with phenylephrine (10 micromol/L).. The binding site-2 (batrachotoxin, aconitine, and veratridine) and binding site-5 (brevetoxin-3) voltage-gated Na(+) channel activators caused slow-onset RbCC relaxations, and the binding site-4 activator Ts1 produced transitory relaxations followed by a return to baseline. The Na(+)channel blockers tetrodotoxin and saxitoxin (0.1 micromol/L each) abolished the relaxations induced by these agonists. Similarly, the nitric oxide synthase inhibitor N(omega)-nitro-l-arginine methyl ester (100 micromol/L) markedly reduced the relaxations and l-arginine (1 mmol/L) restored the relaxations. The soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxidiazolo[4,3-alpha] quinoxalin-1-one (10 micromol/L) reduced the relaxations, and the phosphodiesterase type 5 inhibitor sildenafil (100 nmol/L) significantly potentiated the relaxations by all activators.. Our results indicate that the relaxations evoked by selective activators of voltage-gated Na(+) channels are mediated by the release of nitric oxide from nitrergic nerves and the activation of the nitric oxide-cyclic guanosine monophosphate pathway in the smooth muscle cells of erectile tissue.

    Topics: Aconitine; Animals; Arginine; Batrachotoxins; Binding Sites; Cyclic GMP; Guanylate Cyclase; In Vitro Techniques; Insect Proteins; Isometric Contraction; Male; Marine Toxins; Muscle, Smooth; Neurotoxins; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Oxocins; Penile Erection; Penis; Piperazines; Purines; Rabbits; Scorpion Venoms; Sildenafil Citrate; Sodium Channel Agonists; Sodium Channel Blockers; Sodium Channels; Sulfones; Veratridine

2003