acipimox has been researched along with acifran* in 2 studies
2 other study(ies) available for acipimox and acifran
Article | Year |
---|---|
Analogues of acifran: agonists of the high and low affinity niacin receptors, GPR109a and GPR109b.
Recently identified GPCRs, GPR109a and GPR109b, the high and low affinity receptors for niacin, may represent good targets for the development of HDL elevating drugs for the treatment of atherosclerosis. Acifran, an agonist of both receptors, has been tested in human subjects, yet until recently very few analogs had been reported. We describe a series of acifran analogs prepared using newly developed synthetic pathways and evaluated as agonists for GPR109a and GPR109b, resulting in identification of compounds with improved activity at these receptors. Topics: Cell Line; Cyclic AMP; Furans; Humans; Niacin; Receptors, G-Protein-Coupled; Receptors, Nicotinic; Stereoisomerism; Structure-Activity Relationship | 2007 |
Molecular identification of high and low affinity receptors for nicotinic acid.
Nicotinic acid has been used clinically for over 40 years in the treatment of dyslipidemia producing a desirable normalization of a range of cardiovascular risk factors, including a marked elevation of high density lipoprotein and a reduction in mortality. The precise mechanism of action of nicotinic acid is unknown, although it is believed that activation of a G(i)-G protein-coupled receptor may contribute. Utilizing available information on the tissue distribution of nicotinic acid receptors, we identified candidate orphan receptors. The selected orphan receptors were screened for responses to nicotinic acid, in an assay for activation of G(i)-G proteins. Here we describe the identification of the G protein-coupled receptor HM74 as a low affinity receptor for nicotinic acid. We then describe the subsequent identification of HM74A in follow-up bioinformatics searches and demonstrate that it acts as a high affinity receptor for nicotinic acid and other compounds with related pharmacology. The discovery of HM74A as a molecular target for nicotinic acid may facilitate the discovery of superior drug molecules to treat dyslipidemia. Topics: Amino Acid Sequence; Animals; Cell Membrane; CHO Cells; Cricetinae; Databases as Topic; DNA, Complementary; Dose-Response Relationship, Drug; Female; Furans; Humans; Hyperlipidemias; Hypolipidemic Agents; Inhibitory Concentration 50; Male; Molecular Sequence Data; Niacin; Oocytes; Protein Binding; Pyrazines; Rats; Receptors, Nicotinic; RNA, Messenger; Sequence Homology, Amino Acid; Tissue Distribution; Xenopus | 2003 |